首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental tobacco smoke (ETS), or second-hand smoke, is a widespread contaminant of indoor air in environments where smoking is not prohibited. It is a significant source of exposure to a large number of substances known to be hazardous to human health. Numerous expert panels have concluded that there is sufficient evidence to classify involuntary smoking (or passive smoking) as carcinogenic to humans. According to the recent evaluation by the International Agency for Research on Cancer, involuntary smoking causes lung cancer in never-smokers with an excess risk in the order of 20% for women and 30% for men. The present paper reviews studies on genotoxicity and related endpoints carried out on ETS since the mid-1980s. The evidence from in vitro studies demonstrates induction of DNA strand breaks, formation of DNA adducts, mutagenicity in bacterial assays and cytogenetic effects. In vivo experiments in rodents have shown that exposure to tobacco smoke, whole-body exposure to mainstream smoke (MS), sidestream smoke (SS), or their mixture, causes DNA single strand breaks, aromatic adducts and oxidative damage to DNA, chromosome aberrations and micronuclei. Genotoxicity of transplacental exposure to ETS has also been reported. Review of human biomarker studies conducted among non-smokers with involuntary exposure to tobacco smoke indicates presence of DNA adducts, urinary metabolites of carcinogens, urinary mutagenicity, SCEs and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutations (in newborns exposed through involuntary smoking of the mother). Studies on human lung cancer from smokers and never-smokers involuntarily exposed to tobacco smoke suggest occurrence of similar kinds of genetic alterations in both groups. In conclusion, these overwhelming data are compatible with the current knowledge on the mechanisms of carcinogenesis of tobacco-related cancers, occurring not only in smokers but with a high biological plausibility also in involuntary smokers.  相似文献   

2.
The available epidemiological studies of lung cancer and exposure to other people''s tobacco smoke, in which exposure was assessed by whether or not a person classified as a non-smoker lived with a smoker, were identified and the results combined. There were 10 case-control studies and three prospective studies. Overall, there was a highly significant 35% increase in the risk of lung cancer among non-smokers living with smokers compared with non-smokers living with non-smokers (relative risk 1.35, 95% confidence interval 1.19 to 1.54). Part of this increase was almost certainly caused by the misclassification of some smokers as non-smokers. As smokers, who are more likely to get lung cancer than non-smokers, tend to live with smokers this misclassification probably exaggerated the estimated increase in risk. Adjustment for this error reduced the estimate to 30% (relative risk 1.30), but as people who live with non-smokers may still be exposed to other people''s smoke this estimate was revised again to allow for the fact that a truly unexposed reference group was not used. The increase in risk among non-smokers living with smokers compared with a completely unexposed group was thus estimated as 53% (relative risk of 1.53). This analysis, and the fact that non-smokers breathe environmental tobacco smoke, which contains carcinogens, into their lungs and that the generally accepted view is that there is no safe threshold for the effect of carcinogens, leads to the conclusion that breathing other people''s tobacco smoke is a cause of lung cancer. About a third of the cases of lung cancer in non-smokers who live with smokers, and about a quarter of the cases in non-smokers in general, may be attributed to such exposure.  相似文献   

3.
Nicotine concentrations were measured in saliva and urine samples collected from 82 smokers and 56 non-smokers after a morning at work. Each subject answered a series of questions related to their recent intentional or passive exposure to tobacco smoke. All non-smokers had measurable amounts of nicotine in both saliva and urine. Those non-smokers who reported recent exposure to tobacco smoke had significantly higher nicotine concentrations (p less than 0.001) than those who had not been exposed; their concentrations overlapped those of smokers who had smoked up to three cigarettes before sampling had the greatest influence on nicotine concentrations (r=0.62 for saliva and r=0.51 for urine). Neither the nicotine for yield of cigarettes nor the self-reported degree of inhalation had any significant effect on nicotine concentrations.  相似文献   

4.
OBJECTIVE: To estimate the risk of lung cancer in lifelong non-smokers exposed to environmental tobacco smoke. DESIGN: Analysis of 37 published epidemiological studies of the risk of lung cancer (4626 cases) in non-smokers who did and did not live with a smoker. The risk estimate was compared with that from linear extrapolation of the risk in smokers using seven studies of biochemical markers of tobacco smoke intake. MAIN OUTCOME MEASURE: Relative risk of lung cancer in lifelong non-smokers according to whether the spouse currently smoked or had never smoked. RESULTS: The excess risk of lung cancer was 24% (95% confidence interval 13% to 36%) in non-smokers who lived with a smoker (P < 0.001). Adjustment for the effects of bias (positive and negative) and dietary confounding had little overall effect; the adjusted excess risk was 26% (7% to 47%). The dose-response relation of the risk of lung cancer with both the number of cigarettes smoked by the spouse and the duration of exposure was significant. The excess risk derived by linear extrapolation from that in smokers was 19%, similar to the direct estimate of 26%. CONCLUSION: The epidemiological and biochemical evidence on exposure to environmental tobacco smoke, with the supporting evidence of tobacco specific carcinogens in the blood and urine of non-smokers exposed to environmental tobacco smoke, provides compelling confirmation that breathing other people''s tobacco smoke is a cause of lung cancer.  相似文献   

5.
The exposure of individuals to environmental tobacco smoke (ETS) is of increasing public health concern because epidemiological studies have associated passive smoking with increased risk of a variety of adverse health effects among non-smokers including lung cancer. As a way to measure individual exposure to the mutagenic compounds in the complex mixture of ETS, we used a sensitive Salmonella/microsome micro pre-incubation (microsuspension) assay to detect mutagenicity of particulate matter collected on filters from low volume (1.7 1/min flow rate) personal sampling pumps. Airborne nicotine was collected concurrently as a marker for ETS exposure. In pilot-field studies, individual exposure to ETS was measured in two separate indoor environments in which smokers were present: a gambling casino and a bingo parlor. Total suspended particulate matter (TSP) was collected on filters worn near the breathing zone of non-smoking individuals. Sampling times ranged from 40 min to 6 h. All extracts of filters had detectable levels of mutagenic activity (TA98, +S9) resulting in airborne mutagenic activity concentrations of 500-5000 rev/m3. The mutagenic activity of the filters from the casino and bingo parlors was significantly correlated with total particulate matter per filters (n = 12; Rho = 0.85, p less than 0.01) and with airborne nicotine per filter (n = 12; Rho = 0.95, p less than 0.01). The microsuspension assay was sufficiently sensitive to detect the mutagens associated with extracts of particulate matter from low volume samples (0.2-0.6 m3) in these indoor environments over a relatively short sampling time, and could be useful in studies of personal exposure to the mutagens in environmental tobacco smoke. Further, airborne nicotine concentrations were highly correlated with airborne mutagenicity and the mutagenic activity associated with ETS could therefore be estimated by the concentrations of nicotine.  相似文献   

6.
An objective assessment of exposure to tobacco smoke may be accomplished by means of examining particular biomarkers in body fluids. The most common biomarker of tobacco smoke exposure is urinary, or serum, cotinine. In order to distinguish non-smokers from passive smokers and passive smokers from active smokers, it is necessary to estimate cotinine cut-off points. The objective of this article was to apply statistical distribution of urinary cotinine concentration to estimate cut-off points distinguishing the three above-mentioned groups. The examined group consisted of 327 volunteers (187 women and 140 men) who were ethnically homogenous inhabitants of the same urban agglomeration (Sosnowiec, Poland). The values which enabled differentiation of the examined population into groups and subgroups were as follows: 50 µg l-1 (differentiation of non-smokers from passive smokers), 170 µg l-1 (to divide the group of passive smokers into two subgroups: minimally and highly exposed to environmental tobacco smoke), 550 µg l-1 (differentiation of passive smokers from active smokers), and 2100 µg l-1 (to divide group of active smokers into two subgroups: minimally and highly exposed to tobacco smoke). The results suggest that statistical distribution of urinary cotinine concentration is useful for estimating urinary cotinine cut-off points and for assessing the smoking status of persons exposed to tobacco smoke.  相似文献   

7.
The objective of this study was to compare cotinine concentrations in urine and saliva using gas chromatography (GC), high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). Ninety-four subjects were selected (27 smokers and 67 non-smokers) and interviewed using questionnaire. Of the non-smokers, 39 had been exposed to environmental tobacco smoke (ETS) and 28 had not been exposed to ETS. Cotinine levels among smokers were highest using all three measurements, followed by ETS exposed subjects and non-smokers. Cotinine levels in urine, using HPLC, correlated significantly with levels measured using ELISA (r=0.92) and GC-nitrogen-phosphorus detection (NPD) (r=0.92). Salivary cotinine levels measured using ELISA did not correlate significantly with either HPLC (r=0.37) or GC-NPD (r=0.33) measurements. Multiple regression models were used to adjust for age, gender, drug use and health status, and it was found that cotinine levels in urine and saliva were significantly correlated with smoking pack-year. The authors conclude that urinary cotinine concentration is a more accurate biomarker for ETS than salivary cotinine concentration.  相似文献   

8.
Abstract

An objective assessment of exposure to tobacco smoke may be accomplished by means of examining particular biomarkers in body fluids. The most common biomarker of tobacco smoke exposure is urinary, or serum, cotinine. In order to distinguish non-smokers from passive smokers and passive smokers from active smokers, it is necessary to estimate cotinine cut-off points. The objective of this article was to apply statistical distribution of urinary cotinine concentration to estimate cut-off points distinguishing the three above-mentioned groups. The examined group consisted of 327 volunteers (187 women and 140 men) who were ethnically homogenous inhabitants of the same urban agglomeration (Sosnowiec, Poland). The values which enabled differentiation of the examined population into groups and subgroups were as follows: 50 µg l?1 (differentiation of non-smokers from passive smokers), 170 µg l?1 (to divide the group of passive smokers into two subgroups: minimally and highly exposed to environmental tobacco smoke), 550 µg l?1 (differentiation of passive smokers from active smokers), and 2100 µg l?1 (to divide group of active smokers into two subgroups: minimally and highly exposed to tobacco smoke). The results suggest that statistical distribution of urinary cotinine concentration is useful for estimating urinary cotinine cut-off points and for assessing the smoking status of persons exposed to tobacco smoke.  相似文献   

9.
The exposure of non-smokers to the tobacco-specific N-nitrosamine 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a rodent lung carcinogen, was determined in the air of various indoor environments as well as by biomonitoring of non-smokers exposed to environmental tobacco smoke (ETS) under real-life conditions using the urinary NNK metabolites 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and [4-(N-methylnitrosamino)-1-(3-pyridyl)but-1-yl]-beta-O-D-glucosiduronic acid (NNAL-Gluc). NNK was not detectable (&lt;0.5 ng m-3) in 11 rooms in which smoking did not occur. The mean NNK concentration in 19 rooms in which smoking took place was 17.5 (2.4-50.0) ng m-3. The NNK levels significantly correlated with the nicotine levels (r=0.856; p&lt; 0.0001). Of the 29 non-smokers investigated, 12 exhibited no detectable NNAL and NNAL-Gluc excretion (&lt;3 pmol day) in their urine. The mean urinary excretion of NNAL and NNAL-Gluc of the 17 remaining non-smokers was 20.3 (&lt;3-63.2) and 22.9 (&lt;3-90.0) pmol day-1, respectively. Total NNAL excretion (NNAL+NNAL-Gluc) in all non-smokers investigated significantly correlated with the amount of nicotine on personal samplers worn during the week prior to urine collection (r=0.88; &lt;0.0001) and with the urinary cotinine levels (r=0.40; p=0.038). No correlation was found between NNAL excretion and the reported extent of ETS exposure. Average total NNAL excretion in the non-smokers with detectable NNAL levels was 74 times less than in 20 smokers who were also investigated. The cotinine/total NNAL ratios in urine of smokers (9900) and non-smokers (9300) were similar. This appears to be at variance with the ratios of the corresponding precursors (nicotine/NNK) in mainstream smoke (16400) and ETS (1000). Possible reasons for this discrepancy are discussed. The possible role of NNK as a lung carcinogen in non-smokers is unclear, especially since NNK exposure in non-smokers is several orders of magnitude lower than the ordinary exposure to exogenous and endogenous N-nitrosamines and the role of NNK as a human lung carcinogen is not fully understood.  相似文献   

10.
Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition.  相似文献   

11.
The present review is based on findings from 178 publications retrieved through an extensive search of the MedLine/PubMed database for a 25 years time period (1980-2004) and 10 manually identified papers. Among the cytogenetic biomarkers that are frequently used in field studies, chromosome aberrations (CA) and micronuclei (MN) but not sister chromatid exchanges (SCE) were found consistently increased in children exposed to environmental pollutants. Meta-analysis of the studies reporting SCE in cord blood showed similar levels of SCE in exposed and in non-exposed newborns. Exposure to airborne pollutants, soil and drinking water contaminants, mostly increased CA and, to a lesser extent, MN levels in children. The effect of exposure to airborne urban pollutants was consistently reported by field studies measuring DNA, albumin and hemoglobin adducts. Prenatal (in utero) and postnatal exposure (environmental tobacco smoke, ETS) to tobacco smoke compounds were associated with increased frequencies of DNA and hemoglobin adducts and CA. The limited number of field studies measuring DNA fragmentation (Comet assay), hypoxanthine-guanine phosphoribosyltransferase (HPRT) and the glycophorinA (GPA) mutation frequency in environmentally exposed children precluded a meaningful evaluation of the usefulness of these assays. Meta-analyses performed in children exposed to ETS and in newborns exposed in utero to their mothers' smoke showed 1.3 and 7 times higher levels of hemoglobin adducts compared to referent subjects, respectively. These increases are consistent with the epidemiological evidence of higher lung cancer risks reported in adults who had never smoked and were exposed to ETS during childhood and with 7-15 times higher lung cancer risks reported in smokers than in non-smokers. Higher levels of PAH-DNA adducts were found in fetal than in maternal tissue, suggesting a specific susceptibility of the fetus to this class of ubiquitous environmental pollutants. According to these findings, future research and biomonitoring programs on children would greatly benefit from the inclusion of selected biomarkers that could provide biologically based evidence for the identification of intervention priorities in environmental health.  相似文献   

12.
The evidence available from 3 cohort and 11 case-control studies investigating the relationship between exposure to environmental tobacco smoke (ETS) and lung cancer in non-smokers is reviewed. While it appears most likely that a causal relationship exists, the size of the effect, under different circumstances of exposures, remains to be accurately estimated. This requires studies using valid instruments (e.g., questionnaires) to quantitate exposures, and free as far as possible from biases. An investigation addressing this point is in progress under the coordination of the International Agency for Research on Cancer.  相似文献   

13.
Sister-chromatid exchange frequencies were measured in peripheral lymphocytes of 12 cigarette smokers, 20 passive smokers, and 14 non-smokers with no regular exposure to tobacco smoke. All active and passive smokers worked as waiters and waitresses in restaurants. The passive smokers showed neither an increased mean SCE value nor an increased number of high SCE frequency cells (HFCs) when compared to non-exposed non-smokers. The incidence of SCEs and HFCs was observed to be elevated (P less than 0.01; P less than 0.05, resp.) among the active smokers. The proliferation rate of lymphocytes in whole blood cultures from the different exposure groups was also studied. The proportion of cells in first mitosis was lower and the mean replication index (RI) higher among the smokers than among non-smoker controls. However, no significant correlation was observed between the individual mean SCE and the replication index.  相似文献   

14.
The emergence of air-liquid interface (ALI) culturing of mammalian airway epithelium is a recent innovation for experimental modeling of airway epithelial development, function, and pathogenic mechanisms associated with infectious agent and irritant exposure. This construct provides an experimental platform for in vitro propagation, manipulation, and testing of airway epithelium in a structural and physiologic state that emulates in vivo organization. In this study, we have cultured nasal epithelial biopsies from human subjects with variable histories of tobacco smoke exposure and assessed ciliary beat frequency (CBF) after an extended interval in vitro relative to CBF determined on biopsies from the same subjects immediately upon acquisition. We observed elevated CBF in nasal epithelial biopsies as well as persistence of accelerated CBF in ALI cultures deriving from biopsies of smokers and non-smokers exposed to environmental tobacco smoke compared to CBF in cultures from biopsies of well-documented non-smokers. Moreover, cultures deriving from smokers exhibited reduced ciliation as the cultures matured. These studies document that nasal epithelium cultured in the ALI system retains physiologic and phenotypic characteristics of the epithelial layer in vivo even through rounds of proliferative expansion. These observations suggest that stable epigenetic factors affecting regulation of ciliary function and phenotype commitment may be operative.  相似文献   

15.
Controversial results have been published on the immune response to cigarette smoking while the effects of exposure to environmental tobacco smoke (ETS) have not yet been reported. In a controlled study, acute effects of smoking and of a high environmental exposure to ETS on immunological parameters have been investigated. The study consisted of four experimental days, two control and two exposure days. On control days, 1 and 3, smokers (n=5) and nonsmokers (n=5) sat in an unventilated 45 m3 room for 8 h. On the exposure days, 2 and 4, each of the smokers smoked 24 cigarettes in 8 h, while the nonsmokers were exposed to the ETS generated by the smoking volunteers. Blood was drawn before and after each exposure session on all four experimental days for dosimetry of tobacco smoke exposure and determination of the immune response. Flow cytometry using monoclonal antibodies was used to determine CD3+ cells (whole T cells), CD19+ cells (B lymphocytes), CD16+ and CD56+ cells (natural killer cells), CD4+ cells (T-helper cells), CD8+ cells (T-suppressor cells), the CD4+/CD8+ (helper/supressor ratio), and Fc receptors on granulocytes. Serum was analyzed for soluble CD14 receptors (scD14), interleukin 1, interleukin 6 and prostaglandin E2 (PGE2). Functional stimulation assays were performed to determine the basal and induced level of reactive oxygen intermediate (ROI) production by polymorphic neutrophils. Exposure to tobacco smoke in both groups was confirmed by dosimetry of carboxyhemoglobin, plasma nicotine, and cotinine levels. In comparison to nonsmokers, smokers had elevated granulocyte cell counts, increased CD16+ and CD56+ cell levels and decreased CD3+ and CD19+ levels. Acute smoking, but not exposure to ETS, resulted in a slight decrease in the number of CD19+ cells and an increase in the number of granulocytes; the latter was restricted to one subject. Acute smoking and exposure to high experimental concentrations of ETS resulted in a slight increase in CD16+ and CD56+ cells. None of the changes determined in immunological parameters after either acute smoking or exposure to ETS reached statistical significance. Serum sCD14, cytokine and PGE2, functional stimulation of in vitro ROI production, and changes in Fc receptors were not affected by acute smoking or exposure to ETS. Although no clear guidelines exist to assess immunotoxicity in man, our data do not favor immunosuppression and the possibility of increased risk of infection in nonsmokers exposed to ETS under real-life conditions.Abbreviations AM alveolar macrophage - BALF bronchoalveolar lavage fluid - CO carbon monoxide - CO2 carbon dioxide - COHb carboxyhemoglobin - ELISA enzyme linked immunoassay - ETS environmental tobacco smoke - FITC fluorescein isothiocyanate - IL interleukin - MHC major histocompatibility complex - NK natural killer cell - NO nitrogen oxide - NO2 nitrogen dioxide - PBS phosphate-buffered saline - PE phycoerythrin - PGE2 prostaglandin E2 - PMA phorbol-12-myristate-13-acetate - PMN polymorphic neutrophils - RIA radioimmunoassay - ROI reactive oxygen intermediates - RSP respirable suspended particles - sCD14 soluble CD14 receptor  相似文献   

16.
The nicotine metabolite cotinine is widely used to assess the extent of tobacco use in smokers, and secondhand smoke exposure in non-smokers. The ratio of another nicotine metabolite, trans-3'-hydroxycotinine, to cotinine in biofluids is highly correlated with the rate of nicotine metabolism, which is catalyzed mainly by cytochrome P450 2A6 (CYP2A6). Consequently, this nicotine metabolite ratio is being used to phenotype individuals for CYP2A6 activity and to individualize pharmacotherapies for tobacco addiction. In this paper we describe a highly sensitive liquid chromatography-tandem mass spectrometry method for determination of the nicotine metabolites cotinine and trans-3'-hydroxycotinine in human plasma, urine, and saliva. Lower limits of quantitation range from 0.02 to 0.1ng/mL. The extraction procedure is straightforward and suitable for large-scale studies. The method has been applied to several thousand biofluid samples for pharmacogenetic studies and for studies of exposure to low levels of secondhand smoke. Concentrations of both metabolites in urine of non-smokers with different levels of secondhand smoke exposure are presented.  相似文献   

17.
Epidemiological studies have suggested increased prevalence of atopy in children of maternal smokers. Although secondhand smoke or environmental tobacco smoke (ETS) has been shown to augment allergic responses, its role in atopic sensitization is still controversial. We studied whether ETS could initiate a Th2 response and thus induce primary allergic sensitization. Mice were exposed for 10 consecutive days to either 1% aerosolized OVA, ETS (5 cigarettes), or both ETS and OVA. C57BL/6 mice receiving both ETS and OVA developed OVA-specific IgE and IgG1, 12, 14, and 25 days after the initial exposure, whereas those receiving OVA alone did not. Thirty days after the initial challenge (20 days after its completion), mice were re-exposed to OVA. Bronchoalveolar lavage performed 24 h later revealed an influx of eosinophils in the group initially challenged with both ETS and OVA, but not in those exposed to ETS alone or OVA alone. Increases in IL-5, GM-CSF, and IL-2 were observed in bronchoalveolar lavage from this OVA/ETS-exposed group, whereas IFN-gamma levels were significantly inhibited. These results suggest that ETS can induce allergic sensitization to a normally harmless Ag, and they may explain why secondhand smoke is a major risk factor for the development of allergy in children.  相似文献   

18.
The frequency of micronuclei was measured in peripheral B lymphocytes and some T lymphocyte subpopulations from 5 medium-tar cigarette smokers, and 5 non-smokers with no regular exposure to tobacco smoke. The peripheral lymphocytes were stimulated in vitro with phytohemagglutinin and B lymphocytes and the various T lymphocyte subsets were classified by a recently developed MAC (Morphology, Antibody, Chromosomes) method which allows the immunologic identification of different cell lineages. An increased frequency of micronuclei was observed in B and especially in the suppressor/cytotoxic T8 lymphocytes from smokers, as compared with non-smoker values. In non-smoker cultures, no differences in the frequency of micronuclei were observed among the different T lymphocyte subsets. In these cultures, B cells tended to have a higher frequency of micronuclei than did T cells. The proportions of B cells and the various T subpopulations among mitotic and interphasic lymphocytes from smokers and non-smokers were also determined. The proportions of B cells and T cell subsets among all mitotic lymphocytes were similar in smokers and non-smokers. Contrarily, a significant decrease in the proportion of T8 lymphocytes among all interphasic lymphocytes was observed in cultures derived from smokers.  相似文献   

19.
The population burden of lung cancer due to environmental tobacco smoke is significant because a large fraction of the population is exposed. The risks are, of course, lower than those to smokers themselves; but smoking is self-inflicted, passive smoking is involuntary. Making various assumptions, the proportion of lung cancer cases among non-smokers that could reasonably be attributed to environmental tobacco smoke can be calculated to be about 20–30% in western countries. Thus, non-smokers in the society could benefit considerably from diminishing exposures to other people's smoke.  相似文献   

20.
IntroductionHigh levels of cotinine in non-smokers indicate passive exposure to tobacco smoke. This study aims to evaluate variations in salivary cotinine cut-offs to discriminate smokers and non-smokers before and after the implementation of smoke-free legislation (Law 28/2005 and Law 42/2010) in a sample of the adult population of Barcelona, Spain.MethodsThis longitudinal study analyzes salivary cotinine samples and self-reported information from a representative sample (n = 676) of the adult population from Barcelona before and after the approval of smoke-free legislation. We calculated the receiver operating characteristic (ROC) curves, to obtain optimal cotinine cut-off points to discriminate between smokers and non-smokers overall, by sex and age, and their corresponding sensitivity, specificity, and area under the curve. We used linear mixed-effects models, with individuals as random effects, to model the percentage change of cotinine concentration before and after the implementation of both laws.ResultsThe mean salivary cotinine concentration was significantly lower post-2010 law (−85.8%, p < 0.001). The ROC curves determined that the optimal cotinine cut-off points for discriminating non-smokers and smokers were 10.8 ng/mL (pre-2005 law) and 5.6 ng/mL (post-2010 law), with a post-2010 law sensitivity of 92.6%, specificity of 98.4%, and an area under the curve of 97.0%. The post-2010 law cotinine cut-off points were 5.6 ng/mL for males and 1.9 ng/mL for females.ConclusionThe implementation of Spanish smoke-free legislation was effective in reducing secondhand smoke exposure and, therefore, also in reducing the cut-off point for salivary cotinine concentration. This value should be used to better assess tobacco smoke exposure in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号