首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study analyzes the distribution of sex ratio at birth in African populations using data collected in birth histories in sample demographic surveys (Demographic and Health Surveys and World Fertility Surveys). The average sex ratio from 56 surveys, totaling 1.130 million births, was 1.033 (95% CI, 1.029-1.037), significantly different from the world average of 1.055. The distribution of sex ratios across surveys was found to be heterogeneous, and different from what could have been expected from random fluctuations due to sample size. Three subsets were identified: a subset with lower sex ratios, primarily in countries of eastern and southern Africa of Bantu populations (1.010), a subset with average sex ratios (1.035), and a subset of countries with higher sex ratios, in particular Nigeria and Ethiopia (1.070). Further analysis revealed that African populations are as diverse as other populations, with sex ratios ranging from low values (below 1.00) to high values (above 1.08). Results are discussed in light of independent data sources and in comparison with other human populations.  相似文献   

2.
We examined sex differences in tyrosine hydroxylase immunoreactive (TH-ir) cell populations in the preoptic area (POA), suprachiasmatic nucleus (SCN), posterior tuberculum (TP), and caudal hypothalamus (Hy) in the leopard frog (Rana pipiens), in addition to the effects of natural variation in sex steroid hormones on these same populations in both sexes. All four of these populations have been shown to be dopaminergic. Gonadal sex, androgens, and estrogen all influenced TH-ir cell numbers, but in a complicated pattern of interactions. After factoring out the effects of sex steroids by multiple regression, TH-ir cell numbers in all four areas differed between the sexes, with males having a greater number of TH-ir cells. The influence of androgens and estrogen differed by region and sex of the animals. Androgens were the main influence on TH-ir cell numbers in the POA and SCN. Plasma androgen concentrations were positively correlated with TH-ir cell numbers in both areas in males. In females, androgen concentration was negatively correlated with TH-ir cell numbers in the POA; there was no significant relationship in the SCN in females. In the more caudal populations, estrogen (E2) levels were positively correlated with TH-ir cell numbers in the TP of both males and females. In the caudal hypothalamus, E2 levels were positively correlated with TH-ir cell numbers in females, but there was no significant correlation in males. The results indicate that gonadal sex imposes a baseline sex difference in the four TH-ir (dopamine) populations, resulting in a higher number of such cells in males. Individual and sex-linked differences in gonadal steroid hormones lead to variation around this baseline condition, with androgens having a greater influence on rostral populations and estrogen on caudal populations. Last, an individual's gonadal sex determines the effect that androgens and estrogen have on each population.  相似文献   

3.
Variations of sex inconstancy were examined for vegetative and seed samples from eight natural populations of buffalograss located along two east-west transects crossing the shortgrass prairies of Oklahoma, New Mexico, and Texas. Each of the eight populations was found to contain inconstant (monoecious) sex forms. Sex form distributions ranged from the Guymon vegetative sample, having no inconstant sex forms, to the Chillicothe seed sample in which the frequency of inconstant sex forms was nearly 70%. Frequencies of inconstant sex forms were generally higher for seed samples than for vegetative samples. Male to female sex ratio of constant (dioecious) sex forms generally did not differ from 1:1 expectations. Inconstant sex forms were more common among peripheral populations where buffalograss vegetation coverage was sparse than for more central populations having a higher concentration of buffalograss vegetation. Quantitative measures of sex inconstancy from artificial crosses were significantly (P < 0.001) correlated with the additive linear model of general combining ability, suggesting that sex determination in buffalograss has high heritability. The possible selection forces affecting the frequency of monoecious sex forms among natural populations are discussed.  相似文献   

4.
Yu L  Lu J 《PloS one》2011,6(8):e22903
The Thousand-Island Lake region in Zhejiang Province, China is a highly fragmented landscape with a clear point-in-time of fragmentation as a result of flooding to form the reservoir. Islands in the artificial lake were surveyed to examine how population sex ratio of a dioecious plant specie Pistacia chinensis B. was affected by landscape fragmentation. A natural population on the mainland near the lake was also surveyed for comparison. Population size, sex ratio and diameter at breast height (DBH) of individuals were measured over 2 years. More than 1,500 individuals, distributed in 31 populations, were studied. Soil nitrogen in the different populations was measured to identify the relationship between sex ratio and micro-environmental conditions. In accordance with the results of many other reports on biased sex ratio in relation to environmental gradient, we found that poor soil nitrogen areas fostered male-biased populations. In addition, the degree of sex ratio bias increased with decreasing population size and population connectivity. The biased sex ratios were only found in younger individuals (less than 50 years old) in small populations, while a stable 1∶1 sex ratio was found in the large population on the mainland. We concluded that the effects of landscape fragmentation on the dioecious population sex ratio were mainly achieved in relation to changing soil nitrogen conditions in patches and pollen limitation within and among populations. Large populations could maintain a more suitable environment in terms of nutrient conditions and pollen flow, subsequently maintaining a stable sex ratio in dioecious plant populations. Both micro-environmental factors and spatial structure should be considered in fragmented landscape for the conservation of dioecious plant species.  相似文献   

5.
For many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature‐dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female‐biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.  相似文献   

6.
The moss Syntrichia caninervis is the dominant soil bryophyte in a blackbrush (Coleogyne ramosissima) community in the southern Nevada Mojave Desert, with a mean cover of 6.3%. A survey of the 10-ha study site revealed an expressed ramet sex ratio of 14♀ : 1♂ (N = 890), with 85% of ramets not expressing sex over their life span, and an expressed population sex ratio of 40♀ : 2♂ : 1♀♂ (female : male : mixed-sex, N = 89), with 52% of populations not expressing sex. A greater incidence of sex expression was associated with shaded microsites, higher soil moisture content, and taller ramets. Shaded microsites had higher surface soil moisture levels than exposed microsites. In the exposed microhabitat, surface soil moisture was positively correlated with ramet height but not with sex expression. Male ramets and populations were restricted to shaded microhabitats, whereas female ramets and populations were found in both shaded and exposed microhabitats, suggesting gender specialization. The rarity of mature sporophytes, found in 0% of the ramets sampled and in only 3% of the populations, is probably due to the rarity of mixed-sex populations. We hypothesize that mixed-sex populations are rare because of factors relating to male rarity and that the differential cost of sex expression reduces the clonal growth capacity of male individuals.  相似文献   

7.
Sex ratio variation is commonly observed in natural populations of many organisms with separate sexes and genetic sex determination, including bryophytes. Most bryophyte populations exhibit female-skewed expressed adult sex ratios, generally inferred from counts of sexually mature plants. For the rarely sexually reproducing perennial dioicous moss Drepanocladus lycopodioides, we showed that a female bias also exists in the genetic adult sex ratio, using a specifically designed molecular sex-associated marker. Here, we investigated whether the meiotic spore sex ratio contributes to the observed bias in genetic adult sex ratio in natural populations. Earlier attempts to study meiotic sex ratios have involved commonly cultivated ruderals that rapidly express sex in the laboratory. We established single-spore cultures from field-collected sporophytes from these populations and used the marker to assess the sex of individual sporelings. Spore germinability was (near) complete, and mortality among sporelings was virtually absent. The true meiotic sex ratio did not differ from equality, but strongly differed both from the observed genetic sex ratios in the natural adult populations, and from the European scale genetic sex ratio. We conclude that the biased population sex ratios in this species arise at life cycle stages after spore germination. Sexual dimorphism may selectively favour female proliferation during some phase of gametophyte development. Based on methodological progress, we successfully used a perennial study species with rare sexual reproduction, which significantly broadens the life history spectrum investigated in bryophyte sex ratio studies.  相似文献   

8.
The Halicarcinus planatus populations of the southwestern Atlantic Ocean show a highly variable sex ratio and a large size overlapping between females in the last immature instar (ADO) and mature (MAT) females. We hypothesized that these facts are related and that female impregnation has a central role in this relation. Non-impregnated ADO females delay maturity and would continue to grow, leading to size overlapping. This scenario is most probable in populations with a scarcity of males and could affect the growth, maturity and population structure. The sex ratio and female size distribution of several populations of the southwestern Atlantic Ocean were analysed. Growth and maturity were studied in two populations with different sex ratios (Camarones, a population with males, and Rada Tilly, a population where no males were found). Size overlapping was not related to the population sex ratio. Size overlapping was due to a variable moult increment and, to a lesser extent, to delayed maturity. Females mated before terminal moult in both populations. However, in Camarones, physiological maturity was not related to impregnation, while in Rada Tilly, vitellogenic oocytes were observed only in impregnated females. Also, differences in the number of spermatophores in female spermathecae were related to the sex ratio. Our results showed that the morphological maturity pattern of females was not influenced by the population sex ratio. However, physiological maturity was related to female impregnation and sex ratio. Also, the variation in the number of spermatophores suggests differences in the mating system related to the sex ratio.  相似文献   

9.
Genetic population structure was studied in two types of populations in the ants Formica exsecta and F. pressilabris: populations consisting of single-nest colonies (monodomy) and populations consisting of multi-nest colonies (polydomy). These characteristics seem to be associated with the number of egg-laying females (gynes) in a nest, mating structure of the population, sex ratio and male size variation. The monodomous populations are characterized by single-gyne nests, the population sex ratio is either I:1 or female-biased, males are mainly large-sized, and there is slight inbreeding in the population. The polydomous populations have multi-gyne nests with gynes related to each other, sex ratio is strongly male-biased, most males are small-sized, and there is slight genetic microdifferentiation within the populations. Diploid males found in a polydomous F. pressilabris population suggest that the population is inbred and isolated. Habitat localization is presented as a plausible explanation for the evolution of the polygynous and polydomous population structure.  相似文献   

10.
Byers DL  Warsaw A  Meagher TR 《Heredity》2005,95(1):69-75
Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.  相似文献   

11.
Sexual reproduction depends on mate availability that is reflected by local sex ratios. In species where both sexes can clonally expand, the population sex ratio describes the proportion of males, including clonally derived individuals (ramets) in addition to sexually produced individuals (genets). In contrast to population sex ratio that accounts for the overall abundance of the sexes, the genetic sex ratio reflects the relative abundance of genetically unique mates, which is critical in predicting effective population size but is difficult to estimate in the field. While an intuitive positive relationship between population (ramet) sex ratio and genetic (genet) sex ratio is expected, an explicit relationship is unknown. In this study, we determined a mathematical expression in the form of a hyperbola that encompasses a linear to a nonlinear positive relationship between ramet and genet sex ratios. As expected when both sexes clonally have equal number of ramets per genet both sex ratios are identical, and thus ramet sex ratio becomes a linear function of genet sex ratio. Conversely, if sex differences in ramet number occur, this mathematical relationship becomes nonlinear and a discrepancy between the sex ratios amplifies from extreme sex ratios values towards intermediate values. We evaluated our predictions with empirical data that simultaneously quantified ramet and genet sex ratios in populations of several species. We found that the data support the predicted positive nonlinear relationship, indicating sex differences in ramet number across populations. However, some data may also fit the null model, which suggests that sex differences in ramet number were not extensive, or the number of populations was too small to capture the curvature of the nonlinear relationship. Data with lack of fit suggest the presence of factors capable of weakening the positive relationship between the sex ratios. Advantages of this model include predicting genet sex ratio using population sex ratios given known sex differences in ramet number, and detecting sex differences in ramet number among populations.  相似文献   

12.
Many populations have consistently biased adult sex ratios with important demographic and evolutionary consequences. However, geographical variation, the mechanisms, temporal dynamics and predictors of biased sex ratios are notoriously difficult to explain. We studied 334 wild populations of four species of African annual fish (Nothobranchius furzeri, N. kadleci, N. orthonotus, N. rachovii) across their ranges to compare their adult sex ratio, its seasonal dynamics, interpopulation variation and environmental predictors. Nothobranchius populations comprise a single age cohort and inhabit discrete isolated pools, with wide-ranging environmental conditions (habitat size, water turbidity, structural complexity, predators), making them ideal to study adult sex ratio variation. In captivity adult sex ratios were equal. In natural populations, adult sex ratios were biased 1:2 toward females in three study species while N. kadleci had sex ratios at unity. There was a decline in the proportion of males with age in one species, but not in the other species, implying most severe male mortality early after maturation, declining later perhaps with a decrease in male abundance. In general, the populations at vegetated sites had relatively more males than populations at sites with turbid water and little vegetation. Selective avian predation on brightly coloured male fish likely contributed to female dominance and vegetation cover may have protected males from birds. In addition, an aquatic predator, a large belastomid hemipteran, decreased the proportion of males in populations, possibly due to greater male activity rather than conspicuous colouration. Alternative explanations for a sex ratio bias, stemming from male–male contests for matings, are discussed. We conclude that the effect of environmental conditions on adult sex ratio varies dramatically even in closely related and ecologically similar sympatric species. Therefore, difficulties in explaining the ecological predictors of sex ratio biases are likely due to high stochasticity rather than limited sample size.  相似文献   

13.
Abstract. In contrast to populations of most dioecious Silene species (which usually are female-biased), populations of Silene otites have been frequently reported to be male-biased. We describe sex ratio variation in 34 natural S. otites populations in Central Germany in relation to vegetation cover, population size and fungal infection. The overall sex ratio was unbiased in 1994 and only slightly male-biased in 1995. Sex ratio varied among the populations from 26.6 % to 72.6 % females. The sex ratio of small populations varied strongly due to stochastic processes. Furthermore, we found that populations in habitats with high vegetation cover contained a higher percentage of females. Hermaphroditic plants, theoretically, could increase male bias as they only produce male or hermaphroditic offspring. Their frequency in the populations, however, was far too low to affect sex ratio. In 1994 12.1 % and in 1995 17.0 % of the plants were infected by the smut fungus Ustilago major. Disease incidence in the population was not related to sex ratio, suggesting equal susceptibility of males and females. The sex ratio of partially infected plants did not deviate from the population sex ratio, both under field conditions and in a greenhouse laboratory experiment. The results suggest that the frequently reported male bias in Silene otites populations is not a general pattern, but is mainly caused by environmental conditions.  相似文献   

14.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

15.
High risk populations and HIV-1 infection in China   总被引:1,自引:0,他引:1  
Zhu TF  Wang CH  Lin P  He N 《Cell research》2005,15(11-12):852-857
China is currently experiencing one of the most rapidly expanding HIV epidemics in the world. Although the overall prevalence rate is still low, with a population of 1.3 billion, high-risk factors which have contributed to the HIV/AIDS epidemics worldwide continue to prevail in China, including a high rate of injecting drug use and needle sharing, commercial sex with low rates of condom use, and concurrent sex with both commercial sex workers and non-commercial casual or steady sex partners. In addition, there are increasing "double risk" populations overlapping drug users and sex workers, as well as increasing rates of STDs and HIV among high-risk populations. Sexual transmission, therefore, may serve as a bridge connecting high-risk populations with general populations. There is an urgent need to prevent the spread of HIV from these high-risk populations into the general population of China.  相似文献   

16.
Occasional XY recombination is a proposed explanation for the sex‐chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW‐European Hyla arborea populations identified male‐specific alleles at sex‐linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex‐linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex‐chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY‐recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations).  相似文献   

17.
Sex ratios of populations of the dioecious shrub Pistacia lentiscus L. (Anacardiaceae) were studied. Several hypotheses concerning biased sex ratios were tested. The expected pattern of male preponderance in stressful habitats was not found. The populations located in a microclimatic gradient, such as a slope, did not display a male-biased sex ratio on the stressful middle slope. The populations located in a climatic gradient did not display a male-biased sex ratio in the more xeric habitats. Testing the hypothesis of female preponderance when pollen grain competition exists, we found a significant correlation in the direction opposite to that predicted by this hypothesis. Low density of individuals (an estimate of pollen density) correlates with a high preponderance of females but the sex ratio approaches 1:1 when density increases. This correlation should have an upper threshold in 1:1 because male-biased sex ratios have never been found.  相似文献   

18.
What happens when a population with environmental sex determination (ESD) experiences a change to an extreme environment that causes a highly unbalanced sex ratio? Theory predicts that frequency-dependent selection would increase the proportion of the minority sex and decrease the level of ESD in subsequent generations. We empirically modeled this process by maintaining five laboratory populations of a fish with temperature-dependent sex determination (the Atlantic silverside, Menidia menidia) in extreme constant temperature environments that caused highly skewed sex ratios to occur initially. Increases in the minority sex consistently occurred from one generation to the next across all five populations, first establishing and then maintaining a balanced sex ratio until termination of the experiment at 8 to 10 generations. The extent to which the level of ESD changed as balanced sex ratios evolved, however, was not consistent. Two populations that experienced high temperatures each generation displayed a loss of ESD, and in one of these ESD was virtually eliminated. This suggests that temperature-insensitive, sex-determining genes were being selected. In populations maintained in low temperature environments, however, the level of ESD did not decline. Instead, the response of sex ratio to temperature was adjusted upward or downward, perhaps by selection of sex-determining genes sensitive to higher (or lower) temperatures. The two different outcomes at low versus high temperatures occurred independent of the geographic origin of the founding population. Our results demonstrate that ESD is capable of evolving in response to selection.  相似文献   

19.
Many bird species adjust their offspring sex ratio as a response to environmental conditions or sexual dimorphism in size and dispersal. Offspring sex ratios may therefore vary among populations depending on the different demographic and ecological trajectories. We sampled Common Raven Corvus corax nestlings close to the fledging stage from three Central European regions to test for skewed secondary sex ratios and to investigate differences in sex ratios between populations that differ in recent recolonization history and breeding densities. Between 2005 and 2007, a total of 108 broods with 335 nestlings were sampled and their sex determined using molecular methods. We observed a mean of 3.1 (±1.2) nestlings per brood with no differences among nesting sites, years or regions. Nestling sex ratios were independent of the number of siblings. The overall secondary sex ratio was close to parity and did not differ between the variably structured populations.  相似文献   

20.
Variation in population sex ratio can be influenced by natural selection on alternate sex phenotypes as well as nonselective mechanisms, such as genetic drift and founder effects. If natural selection contributes to variation in population sex ratio, then sex ratio should covary with resource availability or herbivory. With nonselective mechanisms, sex ratio should covary with population size. We estimated sex ratio, resource availability, herbivory and size of 53 populations of gynodioecious Lobelia siphilitica. Females were more common in populations with higher annual temperatures, lower soil moisture and lower predation on female fruits, consistent with sex-specific selection. Females were also more common in small populations, consistent with drift, inbreeding or founder effects. However, small populations occurred in areas with higher temperatures than large populations, suggesting that female frequencies in small populations could be caused by sex-specific selection. Both selective and nonselective mechanisms likely affect sex ratio variation in this gynodioecious species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号