首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of calcium in interleukin- (IL) 8-, IL-1 alpha- and IL-1 beta-induced lymphocyte migration has been investigated by using the calcium channel antagonists, verapamil, nifedipine, diltiazem (IL-8) and the optical isomers of the dihydropyridine analogue SDZ 202-791 (IL-8, IL-1 alpha and IL-1 beta). Potent inhibition of IL-8-induced migration was observed in response to nifedipine (IC50 = 10 nM), verapamil (IC50 = 60 nM) and diltiazem (IC50 = 10 nM). The (+)-isomer of SDZ 202-791 was without effect on any of the agonists tested, however, the (-)-isomer induced dose-related inhibition of stimulated migration, IC50 values being 0.1 nM, 10 pM and 1.0 nM, for IL-8-, IL-1 alpha- and IL-1 beta-induced migration, respectively. Reversal of the inhibitory effects of the (-)-isomer was obtained in the presence of increasing concentrations of (+)-isomer. The induction of lymphocyte migration by IL-8, IL-1 alpha and IL-1 beta therefore appears to be a process dependent on calcium channel activation.  相似文献   

2.
Receptor binding, electrophysiological, and inotropic effects of the pure dihydropyridine enantiomers (+)S202-791 and (-)R202-791 were studied in cardiac preparations. The KI for (+)S202-791 binding correlated with the ED50's for an increase in contractile force and an increase in calcium current, the latter effect occurring at depolarized as well as resting holding potentials. The KI for (-)R202-791 binding was much lower than the IC50's for inhibition of calcium current measured at holding potentials of -80 or -90 mV and a negative inotropic effect, but correlated closely with the IC50 for inhibition of calcium current measured at -30 mV. Thus, (+)S202-791, is a voltage independent calcium channel activator and (-)R202-791 is a voltage dependent calcium channel inhibitor.  相似文献   

3.
The voltage-sensitive calcium channel in cultured chick neural retina cells was characterized by the actions of the enantiomers of Bay K 8644 and 202-791 and other 1,4-dihydropyridines. These cells showed time- and voltage-dependent Ca2+ uptake that was stimulated by K+ depolarization and blocked by the inorganic calcium channel blockers Cd2+ and Co2+. A small fraction only (15% maximum) of the uptake was inactivated by predepolarization of the cells with 80 mM K+. Ca2+ uptake was sensitive to the 1,4-dihydropyridine calcium channel antagonists and activators. (S)-Bay K 8644 and (S)-202-791 stimulated the Ca2+ uptake, and (R)-Bay K 8644 and (R)-202-791 as well as nitrendipine and PN 200-110 inhibited Ca2+ uptake stimulated by K+ depolarization or channel activators. The K+ depolarization-stimulated uptake was inhibited by 90%, but the activator-stimulated uptake was completely blocked by the 1,4-dihydropyridine antagonists. The potencies of these agents as inhibitors of Ca2+ uptake were significantly lower than the binding affinities in membrane preparations from the same cells or their binding and pharmacologic affinities in vascular smooth muscle. K+ depolarization or (S)-Bay K 8644 induced 45Ca2+ uptake was not observed in a glial cell culture. [3H]Nitrendipine and [3H]PN 200-110 bound to membrane preparations of the cells consistent with the presence of a single type of high affinity binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

5.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

6.
L-type Ca2+ channels are essential in triggering the intracellular Ca2+ release and contraction in heart cells. In this study, we used patch clamp technique to compare the effect of two pure enantiomers of L-type Ca2+ channel agonists: (+)-CGP 48506 and the dihydropyridine (+)-SDZ-202 791 in cardiomyocytes from rats 2-5 days old. The predominant Ca2+ current activated by standard step pulses in these myocytes was L-type Ca2+ current. The dihydropyridine antagonist (+)-PN200-110 (5 microM) blocked over 90% of Ca2+ currents in most cells tested. CGP 48506 lead to a maximum of 200% increase in currents. The threshold concentration for the CGP effect was at 1 microM and the maximum was reached at 20 microM. SDZ-202 791 had effects in nanomolar concentrations and a maximum effect at about 2 microM. The maximal effect of (+)-SDZ-202 791 was a 400% increase in the amplitude of Ca2+ currents and was accompanied by a 10-15 mV leftward shift in the voltage dependence of activation. CGP 48506 increased the currents equally at all voltages tested. Both compounds slowed the deactivation of tail currents and lead to the appearance of slowly activating and slowly deactivating current components. However, SDZ-202 791 had larger effects on deactivation and CGP 48506 had larger effect on the rate of Ca2+ current activation. The effect of SDZ-202 791 was fully additive to that of CGP 48506 even after maximum concentrations of CGP. This observation suggests that the two Ca2+ channel agonists may act at two different sites on the L-type Ca2+ channel. We suggest that CGP 48506 would be a potential cardiotonic agent without the deleterious proarrhythmic effects attributable to the dihydropyridine agonists.  相似文献   

7.
8.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

9.
The purpose of this study was to characterize excitation-contraction (e- c) coupling in myotubes for comparison with e-c coupling of adult skeletal muscle. The whole cell configuration of the patch clamp technique was used in conjunction with the calcium indicator dye Fluo-3 to study the calcium transients and slow calcium currents elicited by voltage clamp pulses in cultured myotubes obtained from neonatal mice. Cells were held at -80 mV and stimulated with 15-20 ms test depolarizations preceded and followed by voltage steps designed to isolate the slow calcium current. The slow calcium current had a threshold for activation of about 0 mV; the peak amplitude of the current reached a maximum at 30 to 40 mV a and then declined for still stronger depolarizations. The calcium transient had a threshold of about -10 mV, and its amplitude increased as a sigmoidal function of test potential and did not decrease again even for test depolarizations sufficiently strong (> or = 50 mV) that the amplitude of the slow calcium current became very small. Thus, the slow calcium current in myotubes appears to have a negligible role in the process of depolarization-induced release of intracellular calcium and this process in myotubes is essentially like that in adult skeletal muscle. After repolarization, however, the decay of the calcium transient in myotubes was very slow (hundreds of ms) compared to adult muscle, particularly after strong depolarizations that triggered larger calcium transients. Moreover, when cells were repolarized after strong depolarizations, the transient typically continued to increase slowly for up to several tens of ms before the onset of decay. This continued increase after repolarization was abolished by the addition of 5 mM BAPTA to the patch pipette although the rapid depolarization-induced release was not, suggesting that the slow increase might be a regenerative response triggered by the depolarization-induced release of calcium. The addition of either 0.5 mM Cd2+ + 0.1 mM La3+ or the dihydropyridine (+)-PN 200-110 (1 microM) reduced the amplitude of the calcium transient by mechanisms that appeared to be unrelated to the block of current that these agents produce. In the majority of cells, the decay of the transient was accelerated by the addition of the heavy metals or the dihydropyridine, consistent with the idea that the removal system becomes saturated for large calcium releases and becomes more efficient when the size of the release is reduced.  相似文献   

10.
The effect of dihydropyridine calcium agonists and antagonists on 45Ca2+ uptake into primary neuronal cell cultures was investigated. K+ stimulated neuronal 45Ca2+ accumulation in a concentration dependent manner. This effect was further enhanced by the calcium agonists Bay K 8644 and (+)-(S)-202-791 with EC50 values of 21 nM and 67 nM respectively. The calcium antagonists PN 200-110 and (-)-(R)-202-791 inhibited Bay K 8644 (1 microM) stimulated uptake with IC50 values of 20 nM and 130 nM respectively. 45Ca2+ efflux from neuronal cells was measured in the presence and absence of Na+. Efflux occurred at a much greater rate from cells incubated in the presence of Na+, indicating the existence of an active Na+/Ca2+ exchanger in these neurons. The data suggests that voltage sensitive calcium channels of these neurons are sensitive to dihydropyridines and thus that dihydropyridine binding sites have a functional role in these neuronal cultures.  相似文献   

11.
Parathyroid hormone secretion is negatively regulated by calcium. We utilized calcium channel agents: +202-791, a calcium channel agonist and -202-791, a calcium channel antagonist, to evaluate the role of calcium channels in PTH secretion. +202-791 inhibited PTH release from bovine parathyroid cells and the antagonist stimulated release. Incubation with pertussis toxin which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein (G-protein) releases the inhibition by the calcium channel agonist. These findings indicate that a G-protein is interposed between the calcium channel and a putative intracellular site controlling PTH secretion.  相似文献   

12.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

13.
The binding of (+) (3H) PN 200-110 to high and low affinity sites in mammalian portal vein smooth muscle membranes was characterized. Binding affinities were 0.09 and 30 nM for the high and low affinity sites, respectively, and binding site densities were 45 and 400 fmoles/mg of protein for the respective sites. (+) PN 200-110 blocked both fast and slow calcium currents in isolated cells from portal vein smooth muscle. The blockade of slow calcium current was voltage-dependent as PN 200-110 bound with higher affinity to inactivated slow calcium channels (IC50 = 0.03 nM) than to resting channels (IC50 = 0.15 nM). The blockade of fast calcium current was voltage-independent (IC50 = 45 nM). The IC50 values found from electrophysiological experiments for the binding to inactivated slow and fast calcium channels are similar to the Kd values determined by radioligand binding.  相似文献   

14.
The effects of the organic calcium channel blocker nitrendipine was tested on electrically evoked twitches and on potassium depolarization-induced contractures of rat lumbricalis muscles. Nitrendipine (10(-7) to 5 X 10(-5) M) blocked only the potassium contractures. It was concluded that blocking calcium uptake through the slow voltage-sensitive calcium channels during potassium depolarization blocks the mechanical response of the muscle. Thus extracellular calcium ions are required for the excitation-contraction (E-C) coupling during depolarization contractures. On the other hand, electrically evoked twitches were not affected by nitrendipine; therefore, extracellular calcium ions entering via the slow voltage-sensitive channels are not required for E-C coupling during the twitch.  相似文献   

15.
The presence and function of voltage-gated Ca(2+) channels were examined in individual muscle fibers freshly dispersed from the triclad turbellarian Dugesia tigrina. Individual muscle fibers contracted in response to elevated extracellular K(+) in a concentration-dependent fashion. These depolarization-induced contractions were blocked by extracellular Co(2+) (2.5 mM), suggesting that they were dependent on depolarization-induced Ca(2+) influx across the sarcolemma. A voltage-gated inward current was apparent in whole cell recordings when the outward K(+) current was abolished by replacement of intracellular K(+) by Cs(+). This inward current was amplified with increasing concentration (相似文献   

16.
Purified calcium channels have three allosterically coupled drug receptors   总被引:4,自引:0,他引:4  
(-)-[3H]Desmethoxyverapamil and (+)-[3H]PN 200-110 were employed to characterize phenylalkylamine-selective and 1,4-dihydropyridine-selective receptors on purified Ca2+ channels from guinea-pig skeletal muscle t-tubules. In contrast to the membrane-bound Ca2+ channel, d-cis-diltiazem (EC50 = 4.5 +/- 1.7 microM) markedly stimulated the binding of (+)-[3H]PN 200-110 to the purified ionic pore. In the presence of 100 microM d-cis-diltiazem (which binds to the benzothiazepine-selective receptors) the Bmax for (+)-[3H]PN 200-110 increased from 497 +/- 81 to 1557 +/- 43 pmol per mg protein, whereas the Kd decreased from 8.8 +/- 1.7 to 4.7 +/- 1.8 nM at 25 degrees C. P-cis-Diltiazem was inactive. (-)-Desmethoxyverapamil, which is a negative heterotropic allosteric inhibitor of (+)-[3H]IN 200-110 binding to membrane-bound channels, stimulated 1,4-dihydropyridine binding to the isolated channel. (-)-[3H]Desmethoxyverapamil binding was stimulated by antagonistic 1,4-dihydropyridines [(+)-PN 200-110 greater than (-)(R)-202-791 greater than (+)(4R)-Bay K 8644] whereas the agonistic enantiomers (+)(S)-202-791 and (-)(4S)-Bay K 8644 were inhibitory and (-)-PN 200-110 was inactive. The results indicate that three distinct drug-receptor sites exist on the purified Ca2+ channel, two of which are shown by direct labelling to be reciprocally allosterically coupled.  相似文献   

17.
The interaction of the isomers of verapamil with sites on the calcium channel and alpha 1-adrenergic receptor has been examined. The inhibitory potency of these enantiomers differ with respect to the agonist. KCl- or clonidine-induced contractions of rabbit aortic rings were inhibited in a stereoselective manner by the enantiomers of verapamil with the (-)-isomer being more potent than the (+)-isomer. Similarly, (-)-verapamil was also more potent at displacing (-)-[N-methyl-3H]desmethoxyverapamil than was the (+)-isomer. In contrast, the inhibition of norepinephrine- or phenylephrine-induced aortic contractions was not stereoselective. Differences in enantiomer potency were also observed in vivo. The ability of clonidine to increase blood pressure in the anesthetized rat was blocked in a stereoselective manner by the verapamil enantiomers, while inhibition of the pressor actions of phenylephrine was not. In summary, for agents that rely heavily on calcium channel function (KCl, clonidine), stereoselective inhibition was observed. Stereoselective inhibition was not observed against high efficacy alpha 1-agonists. This difference in stereochemistry argues that verapamil does not act at the same site when inhibiting clonidine or KCl action when compared with norepinephrine or phenylephrine.  相似文献   

18.
Indirect evidence, using organic calcium channel modulators suggests that calcium channels exist in endothelial cells. Using freshly prepared and cultured bovine aortic endothelial cells, we have studied the effect of calcium channel modulators on Fura-2 fluorescence and have examined the binding of the dihydropyridine, (+)[3H]PN200-110. In both isolated primary and cultured cells, external calcium (0.5-2 mM) and bradykinin (10(-8) M) increased the intracellular calcium concentration. In cultured cells, the increase in calcium was not significantly attenuated by preincubation with nitrendipine (10(-8) M) or d-cis-diltiazem (10(-6) M). The calcium agonists (-)Bay k8644 and (+)202-791 had no effect on intracellular calcium concentration, but other agonists including ATP (10(-4) M) and thrombin (1.5 micrograms/ml) significantly increased the calcium concentration. Competition binding studies with (+)[3H]PN200-110 indicated specific binding of this ligand with a KD of 57 nM and a Bmax of 2.1 pmol/10(6) cells. While these data do not provide convincing evidence for the existence of calcium channels in cultured or fresh bovine aortic endothelial cells, explanations may yet reconcile our observations with the presence of calcium channels in these cells.  相似文献   

19.
We have investigated the appearance of calcium current in Xenopus muscle cells in 1- to 6-day-old cultures. Whole cell currents were recorded using a patch-clamp amplifier with sodium and potassium replaced with tetraethylammonium and cesium, respectively, and BaCl2 used in place of CaCl2. When the muscle membrane was depolarized above -30 mV, a slow inward current was activated, the current reached a peak amplitude near 0 mV, and an outward current became apparent above +10 mV. This slow current was enhanced by adding barium or Bay K 8644 to the extracellular recording solution and was blocked by the addition of cobalt, cadmium, or the dihydropyridines nifedipine or (+)PN 200-110. Taken together these results indicate the presence of an inward calcium current mediated through L-type channels. Thirty-one percent of the cells examined on the first day in culture showed no discernible slow inward current; however, as the age of the culture increased, all cells showed slow inward current and there was an increase in the amplitude of the current. A small proportion of the muscle cells (5 out of 34) also showed a fast activating and inactivating inward current. This current, which activated at more hyperpolarized potentials (-40 mV) was only present when 5 mM ATP was included in the internal recording solution. It also appeared to be mediated through a calcium channel but not a dihydropyridine, sensitive channel.  相似文献   

20.

Background

We have shown previously that cryopreservation of human internal mammary arteries activates protein kinase C and enhances intracellular Ca2+ [Ca2+]i. We now present evidence that in human saphenous veins (HSV) cryoinjury is associated with activation of the Rho/Rho kinase signaling pathways and enhanced [Ca2+]i.

Methods

HSV were investigated in vitro either unfrozen within 12 h after removal or after storage at −196 °C in a cryomedium containing 1.8 M dimethyl sulfoxide and 0.1 M sucrose as cryoprotectant additives.

Results

Cryostorage diminished responses to receptor-mediated contractile agonists such as noradrenaline, 5-HT and endothelin-1 by up to 30% whereas responses to KCl were attenuated by about 50%. Concentration-response curves for CaCl2 on unfrozen and cryopreserved HSV revealed similar inhibitory activities of both blocking 1,4-dihydropyridine derivatives nifedipine and the (−)-(R) enantiomer of SDZ 202-791 whereas the Ca2+ channel activating (+)-(S) enantiomer of SDZ 202-791 was 10 times less effective at enhancing contractions to CaCl2 when tested after cryostorage. These functional effects were reflected by changes in [Ca2+]i as demonstrated by fluorescence of Fluo-3AM loaded veins. The diminished activity of (+)-(S) SDZ 202-791 in cryopreserved HSV was reversed partially when the potassium channel opener pinacidil (1 μM) was present during the freezing/thawing process. Blockade of Rho kinase by HA-1077 proved to be significantly more effective at attenuating contractile responses to both endothelin-1 and KCl after cryostorage.

Conclusions

Data suggested that cryopreservation modified [Ca2+]i of venous smooth muscle cells (1) through depolarization-induced changes in Ca2+ influx and (2) through activation of Rho kinase signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号