首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin, keratin, vinculin and desmoplakin organization were studied in primary mouse keratinocytes before and during Ca2+-induced cell contact formation. Double-label fluorescence shows that in cells cultured in low Ca2+ medium, keratin-containing intermediate filament bundles (IFB) and desmoplakin-containing spots are both concentrated towards the cell center in a region bounded by a series of concentric microfilament bundles (MFB). Within 5-30 min after raising Ca2+ levels, a discontinuous actin/vinculin-rich, submembranous zone of fluorescence appears at cell-cell interfaces. This zone is usually associated with short, perpendicular MFB, which become wider and longer with time. Later, IFB and the desmoplakin spots are seen aligned along the perpendicular MFB as they become redistributed to cell-cell interfaces where desmosomes form. Ultrastructural analysis confirms that before the Ca2+ switch, IFB and desmosomal components are found predominantly within the perimeter defined by the outermost of the concentric MFB. Individual IF often splay out, becoming interwoven into these MFB in the region of cell-substrate contact. In the first 30 min after the Ca2+ switch, areas of submembranous dense material (identified as adherens junctions), which are associated with the perpendicular MFB, can be seen at newly formed cell-cell contact sites. By 1-2 h, IFB-desmosomal component complexes are aligned with the perpendicular MFB as the complexes become redistributed to cell-cell interfaces. Cytochalasin D treatment causes the redistribution of actin into numerous patches; keratin-containing IFB undergo a concomitant redistribution, forming foci that coincide with the actin-containing aggregates. These results are consistent with an IF-MF association before and during desmosome formation in the primary mouse epidermal keratinocyte culture system, and with the temporal and spatial coordination of desmosome and adherens junction formation.  相似文献   

2.
In cultured human keratinocytes (NHEK) maintained in medium containing low levels of Ca2+ (0.04 mM) desmoplakin is a component of certain electron-dense bodies in the cytoplasm. These bodies are associated with bundles of intermediate filaments. Upon elevation of the level of Ca2+ in the culture medium to 1.2 mM, desmoplakin first appears at sites of cell-cell contact in association with bundles of intermediate filaments. Subsequently, desmoplakin becomes incorporated into desmosomes in a manner comparable to that seen in mouse keratinocytes (Jones and Goldman: Journal of Cell Biology 101:506-517, 1985). NHEK cells maintained for 24 hr at Ca2+ concentrations between 0.04 mM and 0.18 mM were processed for immunofluorescence, immunoelectron, and conventional electron microscopical analysis. In NHEK cells grown at Ca2+ concentrations of 0.11 mM, desmoplakin appears to be localized in electron-dense bodies associated with intermediate filaments at sites of cell-cell contact in the absence of formed desmosomes. At a Ca2+ concentration of 0.13 mM desmoplakin is arrayed like beads on a "string" of intermediate filaments at areas of cell-cell association. At 0.15 mM, desmosome formation occurs, and desmoplakin is associated with the desmosomal plaque. In basal cell carcinoma cells desmoplakin is not restricted to desmosomes but also occurs in certain electron-dense bodies morphologically similar to those seen in NHEK maintained in low levels of Ca2+ and during early stages of desmosome assembly. We discuss the possibility of "cycling" of desmoplakin through these bodies in proliferative cells.  相似文献   

3.
《The Journal of cell biology》1996,134(4):985-1001
The desmosomal plaque protein desmoplakin (DP), located at the juncture between the intermediate filament (IF) network and the cytoplasmic tails of the transmembrane desmosomal cadherins, has been proposed to link IF to the desmosomal plaque. Consistent with this hypothesis, previous studies of individual DP domains indicated that the DP COOH terminus associates with IF networks whereas NH2-terminal sequences govern the association of DP with the desmosomal plaque. Nevertheless, it had not yet been demonstrated that DP is required for attaching IF to the desmosome. To test this proposal directly, we generated A431 cell lines stably expressing DP NH2-terminal polypeptides, which were expected to compete with endogenous DP during desmosome assembly. As these polypeptides lacked the COOH-terminal IF-binding domain, this competition should result in the loss of IF anchorage if DP is required for linking IF to the desmosomal plaque. In such cells, a 70-kD DP NH2- terminal polypeptide (DP-NTP) colocalized at cell-cell interfaces with desmosomal proteins. As predicted, the distribution of endogenous DP was severely perturbed. At cell-cell borders where endogenous DP was undetectable by immunofluorescence, there was a striking absence of attached tonofibrils (IF bundles). Furthermore, DP-NTP assembled into ultrastructurally identifiable junctional structures lacking associated IF bundles. Surprisingly, immunofluorescence and immunogold electron microscopy indicated that adherens junction components were coassembled into these structures along with desmosomal components and DP-NTP. These results indicate that DP is required for anchoring IF networks to desmosomes and furthermore suggest that the DP-IF complex is important for governing the normal spatial segregation of adhesive junction components during their assembly into distinct structures.  相似文献   

4.
Plakophilins (pkp-1, -2, and -3) comprise a family of armadillo-repeat containing proteins that are found in the desmosomal plaque and in the nucleus. Plakophilin-1 is most highly expressed in the suprabasal layers of the epidermis and loss of plakophilin-1 expression results in skin fragility-ectodermal dysplasia syndrome, which is characterized by a reduction in the number and size of desmosomes in the epithelia of affected individuals. To investigate the role of plakophilin-1 during desmosome formation, we fused plakophilin-1 to the hormone-binding domain of the estrogen receptor to create a fusion protein (plakophilin-1/ER) that can be activated in cell culture by the addition of 4-hydroxytamoxifen. When plakophilin-1/ER was expressed in A431 cells it was incorporated into endogenous desmosomes and did not disrupt desmosome formation. A derivative of A431 cells (A431D) do not form desmosomes, even though they express all the components believed to be necessary for desmosome assembly. Expression and activation of plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining on the cell surface. Co-expression of a classical cadherin (N-cadherin) and plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining at cell-cell borders. These data suggest that plakophilin-1 can induce assembly of desmosomal components in A431D cells in the absence of a classical cadherin; however a classical cadherin (N-cadherin) is required to direct assembly of desmosomes between adjacent cells. The activatable plakophilin-1/ER system provides a unique culture system to study the assembly of the desmosomal plaque in culture.  相似文献   

5.
Desmosomes are cell junctions and cytoskeleton-anchoring structures of epithelia, the myocardium, and dendritic reticulum cells of lymphatic follicles whose major components are known. Using cultured HT-1080 SL-1 fibrosarcoma-derived cells and transfection of cDNAs encoding specific desmosomal components, we have determined a minimum ensemble of proteins sufficient to introduce de novo structures, which, by morphology and functional competence, are indistinguishable from authentic desmosomes. In a more refined analysis, the influence of the desmosomal proteins desmoplakin (Dp), plakoglobin (Pg), and plakophilin 2 (Pp2) on the lateral clustering of the desmosomal transmembrane-glycoprotein desmoglein 2 (Dsg) was examined. We found that for efficient clustering of desmoglein 2 and desmosome structure formation, all three major plaque proteins-desmoplakin, plakoglobin, and plakophilin 2- were necessary. Furthermore, in this cell model, plakophilin 2 was capable of directing desmoplakin to adhaerens junctions (AJ), whereas plakoglobin was crucial for the segregation of desmosomal and AJ components. These results are discussed with respect to the variability in cell junction composition observed in various nonepithelial tissues.  相似文献   

6.
Plakophilins are armadillo repeat-containing proteins, initially identified as desmosomal plaque proteins that have subsequently been shown to also localize to the nucleus. Loss of plakophilin-1 is the underlying cause of ectodermal dysplasia/skin fragility syndrome, and skin from these patients exhibits desmosomes that are reduced in size and number. Thus, it has been suggested that plakophilin-1 plays an important role in desmosome stability and/or assembly. In this study, we used a cell culture system (A431DE cells) that expresses all of the proteins necessary to assemble a desmosome, except plakophilin-1. Using this cell line, we sought to determine the role of plakophilin-1 in de novo desmosome assembly. When exogenous plakophilin-1 was expressed in these cells, desmosomes were assembled, as assessed by electron microscopy and immunofluorescence localization of desmoplakin, into punctate structures. Deletion mutagenesis experiments revealed that amino acids 686-726 in the carboxyl terminus of plakophilin-1 are required for its localization to the plasma membrane. In addition, we showed that amino acids 1-34 in the amino terminus were necessary for subsequent recruitment of desmoplakin to the membrane and desmosome assembly.  相似文献   

7.
In the present study, we have examined how modulation of protein kinase C (PKC) activity affected desmosome organization in HeLa cells. Immunofluorescence and electron microscopy showed that PKC activation upon short exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a reduction of intercellular contacts, splitting of desmosomes and dislocation of desmosomal components from the cell periphery towards the cytoplasm. As determined by immunoblot analysis of Triton X-100-soluble and -insoluble pools of proteins, these morphological changes were not correlated with modifications in the extractability of both desmoglein and plakoglobin, but involved almost complete solubilization of the desmosomal plaque protein, desmoplakin. Immunoprecipitation experiments and immunoblotting with anti-phosphoserine, anti-phosphothreonine and anti-phosphotyrosine antibodies revealed that desmoplakin was mainly phosphorylated on serine and tyrosine residues in both treated and untreated cells. While phosphotyrosine content was not affected by PKC activation, phosphorylation on serine residues was increased by about two-fold. This enhanced serine phosphorylation coincided with the increase in the protein solubility, suggesting that phosphorylation of desmoplakin may be a mechanism by which PKC mediates desmosome disassembly. Consistent with the loss of PKC activity, we also showed that down-modulation of the kinase (in response to prolonged TPA treatment) or its specific inhibition (by GF109203X) had opposite effects and increased desmosome formation. Taken together, these results clearly demonstrate an important role for PKC in the regulation of desmosomal junctions in HeLa cells, and identify serine phosphorylation of desmoplakin as a crucial event in this pathway.  相似文献   

8.
In the present study, we have examined how modulation of protein kinase C (PKC) activity affected desmosome organization in HeLa cells. Immunofluorescence and electron microscopy showed that PKC activation upon short exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a reduction of intercellular contacts, splitting of desmosomes and dislocation of desmosomal components from the cell periphery towards the cytoplasm. As determined by immunoblot analysis of Triton X-100-soluble and -insoluble pools of proteins, these morphological changes were not correlated with modifications in the extractability of both desmoglein and plakoglobin, but involved almost complete solubilization of the desmosomal plaque protein, desmoplakin. Immunoprecipitation experiments and immunoblotting with anti-phosphoserine, antiphosphothreonine and anti-phosphotyrosine antibodies revealed that desmoplakin was mainly phosphorylated on serine and tyrosine residues in both treated and untreated cells. While phosphotyrosine content was not affected by PKC activation, phosphorylation on serine residues was increased by about two-fold. This enhanced serine phosphorylation coincided with the increase in the protein solubility, suggesting that phosphorylation of desmoplakin may be a mechanism by which PKC mediates desmosome disassembly. Consistent with the loss of PKC activity, we also showed that down-modulation of the kinase (in response to prolonged TPA treatment) or its specific inhibition (by GF 109203X) had opposite effects and increased desmosome formation. Taken together, these results clearly demonstrate an important role for PKC in the regulation ofdesmosomal junctions in HeLa cells, and identify serine phosphorylation of desmoplakin as a crucial event in this pathway.  相似文献   

9.
Desmosomes are prominent cell-cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell-cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell-cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell-cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.  相似文献   

10.
Desmosomes are prominent cell-cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell-cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell-cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell-cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.  相似文献   

11.
Using two monoclonal antibodies described in the preceding paper we determined by immunofluorescence microscopy the distribution of an integral membrane protein of the desmosomal domain, the major glycopolypeptide of Mr 165,000 (bovine muzzle epidermal desmosome band 3; desmoglein) in various normal tissues, tumors and cultured cell lines from several mammalian species. This protein was detected in dotted or streak-like arrays along cell boundary structures which were known to contain non-membrane-integrated desmosomal plaque proteins such as desmoplakins. This is true for epithelial, i.e. cytokeratin-expressing cell types, for the desmin-producing myocardiac and Purkinje fiber cells of the heart, and for certain vimentin-containing cells such as arachnoidal and meningiomal cells and dendritic follicular cells of lymph nodes. However, on the basis of both immunoblot and immunocytochemical reactions, the protein is absent from non-desmosomal adhering junctions, including those devoid of desmoplakin but containing another plaque protein, plakoglobin ("band 5 protein"). We have used these antibodies to localize their epitopes with respect to the cell membrane. By immunoelectron microscopy we found that both epitopes are located in the desmosomal plaques, and this was confirmed by microinjection of purified antibodies into living cultured cells which resulted in labelling of the plaques. From these findings, taken together with previous analyses and localizations of the carbohydrate moieties of this glycoprotein, we conclude that desmoglein is a transmembrane glycoprotein which projects into--and contributes to--the desmosomal plaque structure. This glycoprotein represents a general component of true desmosomes and it is coexpressed with obligatory desmosome-specific plaque proteins such as desmoplakin I. The potential value of this glycoprotein as a desmosomal and cell type marker in histology and tumor diagnosis is discussed.  相似文献   

12.
Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Throughout development, they increase in size and number and are especially abundant in epidermis and heart muscle. Desmosomes mediate cell–cell adhesion through desmosomal cadherins, which differ from classical cadherins in their attachments to intermediate filaments (IFs), rather than actin filaments. Of the proteins implicated in making this IF connection, only desmoplakin (DP) is both exclusive to and ubiquitous among desmosomes. To explore its function and importance to tissue integrity, we ablated the desmoplakin gene. Homozygous −/− mutant embryos proceeded through implantation, but did not survive beyond E6.5. Mutant embryos proceeded through implantation, but did not survive beyond E6.5. Surprisingly, analysis of these embryos revealed a critical role for desmoplakin not only in anchoring IFs to desmosomes, but also in desmosome assembly and/or stabilization. This finding not only unveiled a new function for desmoplakin, but also provided the first opportunity to explore desmosome function during embryogenesis. While a blastocoel cavity formed and epithelial cell polarity was at least partially established in the DP (−/−) embryos, the paucity of desmosomal cell–cell junctions severely affected the modeling of tissue architecture and shaping of the early embryo.  相似文献   

13.
Isolation and symmetrical splitting of desmosomal structures in 9 M urea   总被引:11,自引:0,他引:11  
A new way of isolating desmosomal structures from various epithelia is described which takes advantage of the unusual resistance of the desmosomal plaque and parts of the desmosomal membrane domain to denaturing agents such as 9 M urea and 5 M guanidinium hydrochloride (Gdn-HCl). The fractions obtained have been examined by electron microscopy and by gel electrophoresis. When cytoskeletal fractions from epithelial cells, notably those from multistratified epithelia such as bovine epidermis or tongue mucosa, are treated with urea or Gdn-HCl most of the cytoskeletal protein, including cytokeratin material, is removed. The desmosomal structures, however, are retained with well preserved plaque organization and desmoglea components and can be harvested by centrifugation. This simple and rapid procedure for the enrichment of desmosomal structures and proteins also express internal desmosomal domains as the result of "splitting" of the desmosome along the midline structure. These split desmosomal halves reveal regular arrays of desmogleal particles of 8 to 15 nm diameter projecting from the membrane surface. Gel electrophoresis of the polypeptides present in these residual structures has shown prominent amounts of desmoplakins I and II as well as components 3 and 5 whereas glycoproteins 4a and 4b are significantly reduced in relation to untreated or citric acid-treated fractions. Using immunoelectron microscopy on desmosomes split in urea we have also demonstrated the specific localization of desmoplakin on the cytoplasmic side. The observations suggest that the architectural components of the desmosome are among the cell structures most resistant to protein-denaturing treatments. The value of this procedure for preparations of desmosomal proteins and for the production of antibodies specifically reacting with internal domains of junctions, i.e., tools that may interfere with cell-to-cell coupling, is discussed.  相似文献   

14.
The contribution of desmosomes to epidermal integrity is evident in the inherited blistering disorder associated with the absence of a functional gene for plakophilin-1. To define the function of plakophilin-1 in desmosome assembly, interactions among the desmosomal cadherins, desmoplakin, and the armadillo family members plakoglobin and plakophilin-1 were examined. In transient expression assays, plakophilin-1 formed complexes with a desmoplakin amino-terminal domain and enhanced its recruitment to cell-cell borders; this recruitment was not dependent on the equimolar expression of desmosomal cadherins. In contrast to desmoplakin-plakoglobin interactions, the interaction between desmoplakin and plakophilin-1 was not mediated by the armadillo repeat domain of plakophilin-1 but by the non-armadillo head domain, as assessed by yeast two-hybrid and recruitment assays. We propose a model whereby plakoglobin serves as a linker between the cadherins and desmoplakin, whereas plakophilin-1 enhances lateral interactions between desmoplakin molecules. This model suggests that epidermal lesions in patients lacking plakophilin-1 are a consequence of the loss of integrity resulting from a decrease in binding sites for desmoplakin and intermediate filaments at desmosomes.  相似文献   

15.
Organization of cytokeratin bundles by desmosomes in rat mammary cells   总被引:13,自引:11,他引:2       下载免费PDF全文
In a rat mammary epithelial cell line, LA-7, cytokeratin bundles recognized in immunofluorescence by a monoclonal antibody (24B42) disappear after trypsinization of cultures and are gradually reformed after replating. We have followed the time course of cytokeratin filament reappearance by growing cells in low calcium medium (0.1 mM) which prevents desmosome formation, and then shifting to high calcium (1.8 mM) to start the process. By fixing the cells at various intervals and staining them in immunofluorescence for 24B42 cytokeratin and for desmosomal proteins, we found that cell to cell contact and desmosome formation are prerequisites for keratin filament formation in these cells. EGTA treatment, by disassembling desmosomes, causes the cytokeratin filaments to disappear and the 24B42 protein to pass into a soluble form in this cell line, as ascertained by 100,000 g fractionation and immunoenzymatic assay. Cycloheximide treatment also causes cytokeratin filaments to disappear, indicating that protein synthesis is needed for normal filament maintenance. In another related cell line (106A-10a) and in HeLa cells, trypsinization and EGTA exposure do not cause a complete loss of 24B42 immunofluorescence, although distinct filaments disappear, indicating the presence in these cells of different organizing centers, besides desmosomes, for cytokeratin bundle formation. LA7 cells therefore seem to have a cytokeratin system strictly dependent on the presence of desmosomes, which act as an organizing center for filament assembly. 106A-10a cells (also rich in desmosomes) and HeLa cells (showing instead a reduced number of desmosomes) have a cytokeratin system partially or totally independent from that of desmosomes, with different organizing centers.  相似文献   

16.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

17.
18.
Plakophilins are a subfamily of p120-related arm-repeat proteins that can be found in both desmosomes and the nucleus. Among the three known plakophilin members, plakophilin 1 has been linked to a genetic skin disorder and shown to play important roles in desmosome assembly and organization. However, little is known about the binding partners and functions of the most widely expressed member, plakophilin 2. To better understand the cellular functions of plakophilin 2, we have examined its protein interactions with other junctional molecules using co-immunoprecipitation and yeast two-hybrid assays. Here we show that plakophilin 2 can interact directly with several desmosomal components, including desmoplakin, plakoglobin, desmoglein 1 and 2, and desmocollin 1a and 2a. The head domain of plakophilin 2 is critical for most of these interactions and is sufficient to direct plakophilin 2 to cell borders. In addition, plakophilin 2 is less efficient than plakophilin 1 in localizing to the nucleus and enhancing the recruitment of excess desmoplakin to cell borders in transiently transfected COS cells. Furthermore, plakophilin 2 is able to associate with beta-catenin through its head domain, and the expression of plakophilin 2 in SW480 cells up-regulates the endogenous beta-catenin/T cell factor-signaling activity. This up-regulation by plakophilin 2 is abolished by ectopic expression of E-cadherin, suggesting that these proteins compete for the same pool of signaling active beta-catenin. Our results demonstrate that plakophilin 2 interacts with a broader repertoire of desmosomal components than plakophilin 1 and provide new insight into the possible roles of plakophilin 2 in regulating the signaling activity of beta-catenin.  相似文献   

19.
Pemphigus is an autoimmune disease that causes blistering of human epidermis. We have recently shown that autoantibodies in the serum of three pemphigus patients bind to desmosomes (Jones, J. C. R., J. Arnn, L. A. Staehelin, and R. D. Goldman, 1984, Proc. Natl. Acad. Sci. USA., 81:2781-2785), and we suggested that pemphigus blisters form, at least in part, from a specific antibody-induced disruption of desmosomes in the epidermis. In this paper, experiments are described that extend our initial observations. 13 pemphigus serum samples, which include four known pemphigus vulgaris (Pv) and four known pemphigus foliaceus (Pf) serum samples, have been analyzed by both immunofluorescence and by immunoblotting using cell-free desmosome preparations. Tissue sections of mouse skin processed for double indirect immunofluorescence using each of the pemphigus serum samples and a rabbit antiserum directed against a component of the desmosomal plaque (desmoplakin) show similar punctate cell surface staining patterns. This suggests that all 13 pemphigus serum samples contain autoantibodies that recognize desmosomes. These autoantibodies appear specific for stratified squamous epithelial cell desmosomes and do not recognize desmosomes of other tissues (e.g., mouse heart and mouse intestine). Cultured mouse keratinocytes, which possess well-defined desmosomes, were processed for indirect immunofluorescence using the pemphigus serum samples. Eight of the 13 sera (including the four known Pv samples but not the known Pf sera) stain desmosomes in these preparations. By double indirect immunofluorescence the desmoplakin antiserum stains a double fluorescent line along the contacting edges of cultured keratinocytes, whereas the positive pemphigus serum samples stain a single fluorescent line along this same border. We believe that these pemphigus autoantibodies recognize extracellular antigens located somewhere within the region between the two apposing membranes that comprise the desmosome. The pemphigus sera exhibit positive immunoblotting reactions with desmosome-enriched fractions obtained from bovine tongue epithelium. Three serum samples (including two of the four known Pf serum samples) react with 160- and 165-kD desmosome-associated polypeptides (Koulu, L., A. Kusimi, M. S. Steinberg, V. Klaus-Kovtun, and J. R. Stanley, 1984, J. Exp. Med., 160:1509-1518). Another eight serum samples (including the four known Pv sera) recognize a 140-kD desmosome-associated polypeptide. We propose that the antigens recognized by these human autoantibodies may play important roles in the adhesion of cells within the epidermis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Plakoglobin (PG) is a member of the Armadillo family of adhesion/signaling proteins that can be incorporated into both adherens junctions and desmosomes. Loss of PG results in defects in the mechanical integrity of heart and skin and decreased adhesive strength in keratinocyte cultures established from the skin of PG knock-out (PG-/-) mice, the latter of which cannot be compensated for by overexpressing the closely related beta-catenin. In this study, we examined the mechanisms of PG-regulated adhesion in murine keratinocytes. Biochemical and morphological analyses indicated that junctional incorporation of desmosomal, but not adherens junction, components was impaired in PG-/- cells compared with PG+/- controls. Re-expression of PG, but not beta-catenin, in PG-/- cells largely reversed these effects, indicating a key role for PG in desmosome assembly. Epidermal growth factor (EGF) receptor activation resulted in Tyr phosphorylation of PG, which was accompanied by a loss of desmoplakin from desmosomes and decreased adhesive strength following 18-h EGF treatment. Importantly, introduction of a phosphorylation-deficient PG mutant into PG null cells prevented the EGF receptor-dependent loss of desmoplakin from junctions, attenuating the effects of long term EGF treatment on cell adhesion. Therefore, PG is essential for maintaining and regulating adhesive strength in keratinocytes largely through its contributions to desmosome assembly and structure. As a target for modulation by EGF, regulation of PG-dependent adhesion may play an important role during wound healing and tumor metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号