首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate of reaction of - SH groups of the mitochondrial phosphate carrier with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) and N-ethylmaleimide (MalNEt) was followed by measuring the inhibition of phosphate transport. The changes in the rate of reaction caused by alterations of the ionic composition of the matrix were compared with changes of the total intramitochondrial phosphate content, the intramitochondrial K+ content and the value of intramitochondrial pH. The ionic composition was manipulated by addition of valinomycin to non-respiring or to respiring mitochondria and by addition of inorganic phosphate to respiring and non-respiring mitochondria. From all these variables it was the changes of the intramitochondrial pH which correlated with the - SH group reactivity. Internal acidification decreased and internal alkalinization increased the rate of reaction of mitochondrial phosphate carrier with both Nbs2 and MalNEt. Nbs2 did not penetrate the inner mitochondrial membrane as assayed by determination of the acid-soluble thiol content of the matrix. From this fact it follows that the Nbs2-reactive SH groups of the carrier were accessible from the outer surface of the inner membrane in our experiments. It is concluded that intramitochondrial pH modifies the reactivity of the externally oriented - SH groups indirectly. A hypothesis is presented according to which protonation and deprotonation of the carrier molecule on the inner side could induce a conformational change of the whole protein altering also the microenvironment of the - SH groups near the opposite surface.  相似文献   

2.
3.
M E Johnson 《Biochemistry》1978,17(7):1223-1228
The spin label Tempo-maleimide, when "immobilized" in hemoglobin, is shown to exhibit motional fluctuation whose amplitude and/or frequency depend on temperature and solution conditions. These motional fluctuations are observable by several electron spin resonance techniques. For desalted hemoglobin the fluctuations are detectable at approximately -15 degrees C using saturation transfer techniques and at approximately +25 degrees C using line-width measurements of normal absorption spectra. In ammonium sulfate precipitated hemoglobin, however, motional fluctuations are not detectable by either technique up to at least 40 degrees C. The most probable mechanism for spin-label motion appears to be either fluctuations in protein conformation which affect the label binding site or conformational transitions of the nitroxide ring itself. These motional fluctuations are shown to introduce a librational character to the overall label motion during hemoglobin rotational diffusion, with the librational motion significantly affecting the use of spin-label spectral shapes to calculate hemoglobin rotational correlation times.  相似文献   

4.
A quantitative determination of maleimide spin label (MAL) binding in oxi and met hemoglobin (Hb) and bovine serum albumin are investigated using double integration to the ESR signal. This determination permitted the observation that a considerable fraction of MAL is reduced, losing its paramagnetism. Experiments using the same spin label with myoglobin and Hb with blocked-SH groups, where reduction was not observed, indicate the involvement of SH groups in the process. The 4-hydroxy-2,2,6,6-tetramethylpiperidino-1-oxyl spin label (which is not able to bind in the SH group) is reduced too, but the dependence on the molar ratio is different in comparison with the MAL case. In both cases the reduction percentage depends on the molar ratio spin label to protein and to the protein concentration. In order to obtain the total SH groups labeled (two in the Hb case) it is necessary to use an excessive amount of label (around 18:1) in the 0.5 mM Hb concentration.  相似文献   

5.
6.
Summary Reactivity of sulphydryl groups of cytosolic and mitochondrial aspartate aminotransferases from ox heart has been studied. A total of 5 and 7 cysteine residues per monomer are present in cAATo and mAATo, respectively. In native conditions only a single sulphydryl group can be titrated by Nbs2 while the catalytic activity remains unchanged, however in the mitochondrial isozyme the reactivity depends on the functional state of the enzyme. Reactivity toward NEM reveals the existence of a syncatalytic sulphydryl group in the cytosolic isozyme. Titration of cAATo with pMB at pH 8 and pH 5 confirms the existence of two exposed sulphydryl groups with a different reactivity. The results compared with those reported on the corresponding isozymes from pig and chicken heart show that syncatalytic sulphydryl groups are of general occurrence in these enzymes.  相似文献   

7.
Mitochondrial ATPase complex has been spin-labeled in the membrane using the inhibitor N-(2,2,6,6-tetramethylpeperidyl-1-OXYL)-N(cyclohexyl)carbodiimide (nccd). the amount of NCCD bound to mitochondrial fragments is 0.5 nmol/mg and cannot be dialyzed or extracted with ether, chloroform, or methanol. The electron paramagnetic resonance spectrum of NCCD bound to fragments is pH-sensitive, a greater label immobilization occurring at pH values lower or higher than 7. Ether extraction removes the ATPase inhibition by NCCD without detaching the label. This effect appears to be the consequence of the dislocation of some components of the ATPase complex. Removal of F1 natural inhibitor or of F1 does not affect the spectrum of NCCD bound to fragments, while the removal of oligomycin sensitivity-conferring protein produces an increase in the extreme splitting. Oligomycin sensitivity-conferring protein may thus interact with the NCCD binding component of the membrane. The isolation of the NCCD-binding proteolipid results in a large increase in the mobility of the label, but addition of dipalmitoyllecithin decreases the mobility of the label to the original level. Phospholipids are thus necessary to keep the NCCD-binding proteolipid in the native conformation.  相似文献   

8.
Sulfhydryl groups of membrane-bound rhodopsin are studied with the spin label technique by using five maleimide derivative probes of different lengths. Two sulfhydryl groups are titrated per molecule of rhodopsin. These groups are located in protected but probably different environments, less then 12 Å away from the aqueous phase. A distance of about 37 Å is measured between the two groups. These results are consistent with a model in which the two groups would be located close by the external surface of the protein but embedded within the membrane layer, the strong immobilization of the label molecules resulting from phospholipid-protein interactions.  相似文献   

9.
Biogenesis of the chloroplast phosphate translocator   总被引:1,自引:0,他引:1  
Calcium-dependent proteolysis of several polypeptides from rat brain and synaptosomal cytosol was observed including proteolysis of polypeptides of Mr 340 000 and 300 000. These latter polypeptides comigrated with high-Mr microtubule-associated proteins of microtubule preparations from brain or synaptosomal cytosol. Calcium influx into intact synaptosomes due to depolarisation with high potassium or veratridine or treatment with the ionophore A23187 did not result in Ca2+-dependent proteolysis of any polypeptides. This may be due to the low calcium sensitivity of the protease since no proteolysis of the Mr 340 000 and 300 000 polypeptides was seen in synaptosomal cytosal at < 10 μM free Ca2+.  相似文献   

10.
Electron paramagnetic resonance was used to characterize the first use of a thiol-specific spin label in membranes. Procedures for use of the spin-label, 1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl (methanethiosulfonate MTS) covalently attached to membrane proteins in human erythrocyte membranes are reported. The major findings are: (1) MTS was found to be thiol-specific in membranes as it is for soluble proteins; (2) MTS labels ghost proteins in as few as 30 min at room temperature, providing a distinct advantage when sensitive or fragile membranes are to be used; (3) the distribution of the spin label suggests that the major cytoskeletal protein, spectrin, and the major transmembrane protein (Band 3) incorporate the highest percentage of spin label. This procedure expands the tools with which the researcher can investigate the physical state of membrane proteins and its alteration upon interaction of membrane perturbants or in pathological conditions.  相似文献   

11.
Mitochondrial NADH-ubiquinone oxidoreductase (Complex I) is a lipoprotein enzyme containing phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin. Enzyme preparations containing endogenous cardiolipin and a range of either soyabean PC or dimyristoylphosphatidylcholine (DMPC) concentrations have been made. Using a spin-labelled fatty acid, two probe environments differing in mobility have been shown to be present. The fatty acid probe has a relative binding constant (or partition coefficient between lipid and protein) of unity. The boundary layer or lipid annulus reported by the probe has a value of approx. 300 lipid molecules per molecule of enzyme FMN in preparations containing soyabean PC, or DMPC above the phase transition temperature of the latter. In soyabean PC-replaced enzyme the apparent size of the boundary layer is independent of temperature between 30 degrees C and 14 degrees C but shows a modest increase to about 400 lipid molecules per molecule of FMN between 14 degrees C and 2 degrees C. Complex I replaced with high concentrations of DMPC gives non-linear Arrhenius plots of NADH-ubiquinone oxidoreductase activity. The results of the ESR experiments show that both boundary layer and bulk lipid must be motionally restricted for this to occur. Thus, the change in activity is probably not caused by an effect exerted directly on the catalytic activity of the enzyme but is more likely due to restriction of free diffusion of ubiquinone to its site of reduction.  相似文献   

12.
Sulfhydryl groups of membrane-bound rhodopsin are studied with the spin label technique by using five maleimide derivative probes of different lengths. Two sulfhydryl groups are titrated per molecule of rhodopsin, These groups are located in protected but probably different environments, less than 12 A away from the aqueous phase. A distance of about 37 A is measured between the two groups. These results are consistent with a model in which the two groups would be located close by the external surface of the protein but embedded within the membrane layer, the strong immobilization of the label molecules resulting from phosphlipid-protein interactions.  相似文献   

13.
Summary Several fluorescent maleimide compounds were evaluated as possible substitutes for N-(4-aminophenyl)maleimide in the histochemical procedures developed by Sippel (1973, 1978a, b, 1980) for the demonstration of sulfhydryl and disulfide groups. The brightest and most selective fluorescence was obtained by using N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM), although both eosin-5-maleimide and fluorescein-5-maleimide could also be used if adequate control preparations were made.  相似文献   

14.
Carboxymethylation of sulphydryl groups in proteolipids   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
Horse-heart ferrocytochrome c has been labeled with N-(2,2,5,5-tetramethyl-3-pyrrolidinyl-1-oxyl) iodoacetamide at methionine-65. The paramagnetic resonance spectrum of labeled ferricytochrome c indicates a weak immobilization of the radical (τc = 9.3·10−10 sec) which becomes stronger upon binding of labeled cytochrome c to cytochrome c-depleted mitochondrial membranes (τc = 3.3·10−9 sec). The hyperfine coupling constant remains, however, unchanged (16.7 ± 0.1 gauss) indicating that the cytochrome c binding site is highly polar. The region where cytochrome c is bound to the membrane is insensitive to large variations of medium viscosity.  相似文献   

17.
Using an 5-AvaII fragment of the spinach (Spinacia oleracea L.) phosphate translocator cDNA as a probe for a hybridization screening of a pea (Pisum sativum L.) cDNA library we have cloned and sequenced a cDNA clone coding for the phosphate translocator precursor protein from pea chloroplasts. The full-length cDNA clone comprises 42 base pairs (bp) at the 5-non-coding region, a 1206-bp coding region corresponding to a polypeptide of 402 amino-acid residues (relative molecular mass 43 671) and 244 bp at the non-coding 3-region. Determination of the N-terminal sequence of the phosphate translocator from both pea and spinach chloroplasts revealed that the transit peptides consist of 72 and 80 amino-acid residues, respectively. These transit peptides are different from those of other chloroplastic transit peptides in that they both contain an amphiphilic -helix which is located either in close proximity to the processing site in pea or at the N-terminus in spinach. The mature proteins from pea and spinach both contain about 87% identical amino-acid residues and about seven putative membrane-spanning -helices. Some of these -helices have an amphiphilic character and might serve to form a hydrophilic translocation channel through the membrane. The in-vitro synthesized pea precursor protein is directed to the chloroplast and inserted into the chloroplast envelope membrane.Abbreviations bp base pairs - kDa kilodaltons - Mr relative moleculas mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We wish to thank Dr D. Pappin and R. Jakes (AFRC Sequencing Laboratory, Department of Biochemistry, University of Leeds, UK) for performing the N-terminal sequence determinations and are greatful to Dr J. S. Gantt (Botany Department, University of Georgia, Athens, USA) for a pea leaf cDNA library and to Professor J. C. Gray (University of Cambridge, Department of Botany, Cambridge, UK) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Science and Engineering Research Council and the Royal Society. D.L.W. was the recipient of the Royal Society Rosenheim research fellowship and K.F. was supported by a fellowship from the Studienstiftung des deutschen Volkes.  相似文献   

18.
Extracts of feverfew inhibit platelet aggregation and the platelet release reaction. The active components are believed to be sesquiterpene lactones such as parthenolide. Evidence is presented that inhibition of platelet behaviour is via neutralization of sulphydryl groups either inside or outside the cell. The precise nature of the sulphydryl groups that are susceptible to feverfew and are involved in platelet aggregation and the release reaction have not yet been defined.  相似文献   

19.
Role of sulphydryl groups in adenosine deaminase   总被引:1,自引:0,他引:1  
  相似文献   

20.
The location of sulphydryl groups in alpha-crystallin   总被引:1,自引:0,他引:1  
The microenvironments of the sulphydryl groups in the multimeric protein, alpha-crystallin, were studied by examining: the rate of the reaction of the groups with DTNB; the effect of increasing urea concentrations on their accessibilities; and the quenching of a fluorescent probe. In foetal bovine alpha-crystallin (1 SH/alpha A subunit) both kinetic and quenching studies indicated that over 90% of the sulphydryl groups fell into a single buried class; the remainder was exposed. In the human protein (2 SH/alpha A subunit), half of the groups were buried and the other half exposed. Accessible sulphydryl groups increased gradually as the urea concentration was increased, with complete exposure at about 4.0 M. Sedimentation velocity analyses revealed that no significant dissociation of the aggregates into subunits occurred below 3.5 M urea, at which point over 80% of the sulphydryl groups were exposed. An age-dependent increase (3-35%) was found in the proportion of exposed sulphydryl groups in bovine alpha-crystallin and a decrease in the urea concentration required to expose the remainder. It was concluded that the single cysteine is buried in the newly synthesized protein, but becomes solvent-exposed as a result of age-related conformational changes. Our observations are consistent with a quaternary structure in which all alpha A subunits occupy equivalent sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号