首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Angiotensin I-converting enzyme (ACE) inhibitory activity was generated from elastin and collagen by hydrolyzing with thermolysin. The IC50 value of 531.6 μg/mL for ACE inhibition by the elastin hydrolysate was five times less than 2885.1 μg/mL by the collagen hydrolysate. We confirmed the antihypertensive activity of the elastin hydrolysate in vivo by feeding spontaneously hypertensive rats (male) on a diet containing 1% of the elastin hydrolysate for 9 weeks. About 4 week later, the systolic blood pressure of the rats in the elastin hydrolysate group had become significantly lower than that of the control group. We identified novel ACE inhibitory peptides, VGHyp, VVPG and VYPGG, in the elastin hydrolysate by using a protein sequencer and quadrupole linear ion trap (QIT)-LC/MS/MS. VYPGG had the highest IC50 value of 244 μM against ACE and may have potential use as a functional food.  相似文献   

2.
Several novel N-substituted N-nitrosohydroxylamines were synthesized. They all inhibited mushroom tyrosinase, but the type of inhibition was different depending on the substituent. Some N-(mono- or dihydroxybenzyl)-N-nitrosohydroxylamines exhibited uncompetitive inhibition with respect to L-dopa. Among them, compound 6 was also a competitive inhibitor with respect to oxygen. This observation suggests that another interaction by the meta- or para-hydroxyl group might stabilize the binding of the inhibitor to the enzyme through the oxygen binding site.  相似文献   

3.
The concise synthesis of rhododendrol glycosides 38, which are novel derivatives of (+)-epirhododendrin (1) and (−)-rhododendrin (2), has been achieved in six steps from benzaldehyde 9. The key reactions include aldol condensation and trichloroacetimidate glycosylation. From biological studies, it has been determined that synthetic derivatives of 1 and 2 possess potent tyrosinase inhibitory activity. Particularly, the inhibitory activity of cellobioside 8 (IC50 = 1.51 μM) is six times higher than that of kojic acid. The R-epimers (4, 6, and 8) possessed more potent activity than the corresponding S-epimers (3, 5, and 7), indicating that tyrosinase inhibitory activity is significantly governed by stereochemistry of rhododendrol glycosides.  相似文献   

4.
A new series of polyhydroxylated N-benzylbenzamide derivatives containing an adamantyl moiety has been synthesized, and the depigmenting and tyrosinase inhibitory activities of the molecules were evaluated. The lipophilic character of the adamantyl moiety appeared to confer greater depigmentation power on the benzamide derivatives as compared to those lacking adamantyl substitution. Molecular modeling was applied in order to elucidate the interactions between ligands and tyrosinase that led to inhibition.  相似文献   

5.
Eighteen constituents, including nine new compounds, were isolated from the bee pollen of Quercus mongolica. The structures of the new compounds were established on the basis of combined spectroscopic analysis. Structurally, the nine new compounds are polyamine derivatives with phenolic moieties which were assigned as one putrescine derivative, mogolicine A (2), seven spermidine derivatives, mongolidines A-G (35, 8, 12, 14, 17) and one spermine derivative, mogoline A (18). Evaluation of the biological activity of isolated compounds revealed that the polyamine derivatives with coumaroyl and caffeoyl moieties showed tyrosinase inhibition with IC50 values of 19.5–85.8 μM; however, the addition of a methoxy group to phenolic derivatives reduced the inhibitory activity.  相似文献   

6.
Tyrosinase inhibitory activity of flavonols, galangin, kaempferol and quercetin, was found to come from their ability to chelate copper in the enzyme. In contrast, the corresponding flavones, chrysin. apigenin and luteolin, did not chelate copper in the enzyme. The chelation mechanism seems to be specific to flavonols as long as the 3-hydroxyl group is free. Interestingly, flavonols affect the enzyme activity in different ways. For example, quercetin behaves as a cofactor and does not inhibit monophenolase activity. On the other hand, galangin inhibits monophenolase activity and does not act as a cofactor. Kaempferol neither acts as a cofactor nor inhibits monophenolase activity. However, these three flavonols are common to inhibit diphenolase activity by chelating copper in the enzyme.  相似文献   

7.
A series of N-(P-substituted phosphinoyl)peptides were synthesized and their antihypertensive activities were tested in spontaneously hypertensive rats (SHR). Among them, N-(dibenzyloxyphosphinoyl)-L-Ala-L-Pro-L-Pro-OH showed the most potent and long-lasting antihypertensive activity in SHR when administered orally. Although the inhibitory activity of this peptide against the angiotensin-converting enzyme was about one-hundredth of that of Captopril, the antihypertensive activity in SHR was significantly higher and longer-lasting than that of Enalapril which has been reported to be the most potent agent among similar converting enzyme inhibitors.  相似文献   

8.
Stereoselective syntheses of daedalin A and quercinol, an enantiomer of daedalin A, is described. The tyrosinase inhibitory activities of daedalin A and quercinol were examined. The activity of quercinol was weaker than that of daedalin A at high concentration.  相似文献   

9.
The rational structural modification of new substituted indolizin-3-yl(phenyl)methanones 1ai, 2ai and 3ai has greatly improved human farnesyltransferase inhibition. The para-bromophenyl analog 2f bearing an ester unit on the indolizine ring demonstrates the highest inhibition potential, with IC50 value of 1.3 ± 0.2 μM. The amidic series 1ai proves to be the most promising for future modulations, particularly at the triple bond level.  相似文献   

10.
In this study, the phlorotannin dieckol, which was isolated from the brown alga Ecklonia cava, was examined for its inhibitory effects on melanin synthesis. Tyrosinase inhibitors are important agents for cosmetic products. We therefore examined the inhibitory effects of dieckol on mushroom tyrosinase and melanin synthesis, and analyzed its binding modes using the crystal structure of Bacillus megaterium tyrosinase (PDB ID: 3NM8). Dieckol inhibited mushroom tyrosinase with an IC(50) of 20μM and was more effective as a cellular tyrosinase having melanin reducing activities than the commercial inhibitor, arbutin, in B16F10 melanoma cells, and without apparent cytotoxicity. It was found that dieckol behaved as a non-competitive inhibitor with l-tyrosine substrates. For further insight, we predicted the 3D structure of tyrosinase and used a docking algorithm to simulate binding between tyrosinase and dieckol. These molecular modeling studies were successful (calculated binding energy value: -126.12kcal/mol), and indicated that dieckol interacts with His208, Met215, and Gly46. These results suggest that dieckol has great potential to be further developed as a pharmaceutical or cosmetic agent for use in dermatological disorders associated with melanin.  相似文献   

11.
Effect of a series of 1-phenylthioureas 1a-k and 1,3-disubstituted thioureas 2a-k were evaluated against melanin formation in melanoma B16 cell line and mushroom tyrosinase. Inhibitory activity of tyrosinase of 1-phenylthioureas 1a-k is parallel to their melanogenic inhibition. Thus, the melanogenic inhibition in melanoma B16 cells of 1-phenylthioureas could be the result of inhibition of tyrosinase. However, 1,3-diaryl or 1-phenyl-3-alkylthioureas, 2a-k, appears as melanogenic inhibitor without inhibition of tyrosinase. The molecular docking study of 1e and 2b to binding pocket of tyrosinase provided convincing explanation regarding the necessity of direct connection of planar phenyl to thiourea unit without N'-substitution of phenylthioureas 1 as tyrosinase inhibitor and 2 as non-tyrosinase inhibitor.  相似文献   

12.
A tyrosinase inhibitor was isolated from the seeds of Euphorbia lathyris L. by bioassay-guided fractionation and purification, using silica gel column chromatography. It was identified as esculetin by comparing its physical properties and spectral data with those of an authentic sample. The IC50 value of esculetin in the mushroom tyrosinase activity test was 43 microM. The kinetic study indicates that esculetin exhibited competitive inhibition against the oxidation of 3-(3,4-dihydroxyphenyl)-alanine by mushroom tyrosinase. The structure-activity relationships among five esculetin analogs suggest that hydroxyl groups at the C6 and C7 positions of the coumarin skeleton played an important role in the expression of tyrosinase inhibitory activity.  相似文献   

13.
14.
Disulfide reduction is an important step in antigen processing for HLA class II restricted T cell responses. Migration inhibitory factor (MIF) is a member of the thioredoxin family and has been classically defined as a cytokine. Using enzyme-linked immunosorbent assay and CD analysis, here we describe the binding to MIF of two peptides, hepatitis B surface antigen (HBsAg) and insulin B (InsB) with high affinity for HLA class II allo-types, HLA-DP2 and HLA-DQ8, respectively. At neutral pH, cysteinylated InsB was a substrate for MIF thiol reductase activity, as assessed by mass spectroscopy/electrospray analysis. Finally, a biologically active form of MIF co-immunopurified with mature forms of HLA DP2/15, and a peptide derived from the HLA-DP beta1 helix could be used for affinity purification of MIF. The possibility that MIF participates in class II antigen presentation and/or as a chaperone is discussed.  相似文献   

15.
Wu B  He S  Wu XD  Pan YJ 《化学与生物多样性》2008,5(7):1298-1303
Chemical investigation of the leaves and stems of Chloranthus henryi resulted in the isolation and characterization of two new eudesmane-type sesquiterpenes, and two new germacrane-type sesquiterpenes, together with two known compounds. The inhibitory activities against tyrosinase of all isolates were also evaluated.  相似文献   

16.
Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2–5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p < 0.05, R2 of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50 = 43.8 ± 8.8 μM) and IPM (IC50 = 69.5 ± 8.7 μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.  相似文献   

17.
A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC50 0.037, 0.044 and 0.042?μM, respectively, while IC50 of thiourea is 20.9?μM.  相似文献   

18.
The tyrosinase inhibitory activity of ethanolic extract of kenaf (Hibiscus cannabinus L.) leaf was evaluated before and after subjecting it to far-infrared (FIR) irradiation. The main component of the extract was analyzed as kaempferitrin (kaempferol-3,7-O-α-dirhamnoside). Prior to FIR irradiation, no inhibitory activity of the extract was detected in a tyrosinase assay. However, after FIR irradiation for 1h at 60°C, significant tyrosinase inhibitory activity (IC(50)=3500 ppm) was observed in it. In HPLC analysis, derhamnosylation products (kaempferol, afzelin, and α-rhamnoisorobin) were detected. The inhibitory activity may be due to the existence of derhamnosylation products. This study demonstrated that FIR irradiation can be used as a convenient tool for deglycosylation of flavonoid glycoside.  相似文献   

19.
In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass) and ethanolic extracts (10% mass and 70% ethanol), respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL), 66.96% and 94.03% (at 3 mg/mL), respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL). These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry.  相似文献   

20.
Tyrosinase is the rate-limiting enzyme for controlling the production of melanin in the human body, and overproduction of melanin can lead to a variety of skin disorders. In this paper, the inhibitory kinetics of Dihydromyricetin (DHM) on tyrosinase and their binding mechanism were determined using spectroscopy, molecular docking, antioxidant assays, and chromatography. The spectroscopic results indicate that DHM reversibly inhibits tyrosinase in a mixed-type manner through a multiphase kinetic process with the IC50 of 849.88 μM. It is shown that DHM has a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting that a stable DHM–tyrosinase complex is generated. Molecular docking results suggest that the dominant conformation of DHM does not directly bind to the active site of tyrosinase. Moreover, the antioxidant assays demonstrate that DHM has powerful antioxidant and reducing capacity but does not have the ability to reduce dopachrome to L-DOPA. Interestingly, the results of spectroscopy and chromatography indicate that DHM is a substrate of tyrosinase but not a suicide substrate. The possible inhibitory mechanism is proposed, which will be helpful to design and search for tyrosinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号