首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 TAT蛋白转导肽的研究进展   总被引:3,自引:0,他引:3  
TAT蛋白转导肽是人类免疫缺陷病毒1型(human immunodeficiency virus type 1, HIV-1)编码的一段富含碱性氨基酸、带正电荷的多肽,属于蛋白转导域家族的一员。长期研究发现其全长及11个碱性氨基酸富集区的核心肽段(YGRKKRRQRRR)不仅能够在包括蛋白质、多肽及核酸等多种外源生物大分子的跨膜转导过程中具有重要作用,而且能够携带这些外源生物大分子通过活体细胞的各种生物膜性结构(如细胞膜和血脑屏障等)并发挥生理功能,但其跨膜转导机制仍不明确。新近研究还发现TAT核心肽段在促进外源蛋白高效表达过程中也具有重要作用,能够显著增加外源蛋白高效、可溶性表达的水平,显示了TAT蛋白转导肽的新功能。以TAT蛋白转导肽跨膜转导作用的长期研究背景为基础,分别从TAT蛋白转导肽的结构特点、其跨膜转导作用的影响因素及其作用机制等方面进行了系统综述,进一步结合TAT蛋白转导肽的最新研究进展分别从药物研发、机制探索及新功能的开发等方面展望了后续研究方向与应用价值,不仅为深入阐述TAT蛋白转导肽的跨膜转导作用的功能意义提供了参考依据,而且为TAT蛋白转导肽在微生物工程及蛋白质工程等领域的潜在应用价值提供了重要参考信息。  相似文献   

2.
3.
4.
Cellular uptake of the human immunodeficiency virus TAT protein transduction domain (PTD), or cell-penetrating peptide, has previously been surmised to occur in a manner dependent on the presence of heparan sulfate proteoglycans that are expressed ubiquitously on the cell surface. These acidic polysaccharides form a large pool of negative charge on the cell surface that TAT PTD binds avidly. Additionally, sulfated glycans have been proposed to aid in the interaction of TAT PTD and other arginine-rich PTDs with the cell membrane, perhaps aiding their translocation across the membrane. Surprisingly, however, TAT PTD-mediated induction of macropinocytosis and cellular transduction occurs in the absence of heparan sulfate and sialic acid. Using labeled TAT PTD peptides and fusion proteins, in addition to TAT PTD-Cre recombination-based phenotypic assays, we show that transduction occurs efficiently in mutant Chinese hamster ovary cell lines deficient in glycosaminoglycans and sialic acids. Similar results were obtained in cells where glycans were enzymatically removed. In contrast, enzymatic removal of proteins from the cell surface completely ablated TAT PTD-mediated transduction. Our findings support the hypothesis that acidic glycans form a pool of charge that TAT PTD binds on the cell surface, but this binding is independent of the PTD-mediated transduction mechanism and the induction of macropinocytotic uptake by TAT PTD.  相似文献   

5.
6.
7.
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell‐to‐cell communication over short distances, and also for long‐range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post‐translationally modified peptides. These peptides are derived from inactive pre‐pro‐peptides of approximately 70–120 amino acids. Multiple post‐translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.  相似文献   

8.
The concept of homeoprotein transduction as a novel signaling pathway has dramatically evolved since it was first proposed in 1991. It is now well established in several biological systems from plants to mammals. In this review, the different steps that have led to this unexpected observation are recalled and the developmental and physiological models that have allowed us (and a few others) to consolidate the original hypothesis are described. Because homeoprotein signaling is active in plants and animals it is proposed that it has predated the separation between animals and plants and is thus very ancient. This may explain why the basic phenomenon of homeoprotein transduction is so minimalist, requiring no specific receptors or transduction pathways beside those offered by mitochondria, organelles present in all eukaryotic cells. Indeed complexity has been added in the course of evolution and the conservation of homeoprotein transduction is discussed in the context of its synergy with bona fide signaling mechanism that may have added robustness to this primitive cell communication device. The same synergy possibly explains why homeoprotein signaling is important both in embryonic development and in adult functions fulfilled by signaling entities (e.g. growth factors) themselves active throughout development and in the adult. The cell biological mechanism of homeoprotein transfer is also discussed. Although it is clear that many questions are still in want of precise answers, it appears that the sequences responsible both for secretion and internalization are in the DNA-binding domain and very highly conserved among most homeoproteins. On this basis, it is proposed that this signaling pathway is likely to imply as many as 200 proteins that participate in a myriad of developmental and physiological pathways.  相似文献   

9.
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.  相似文献   

10.
11.
The development of peptide drugs and therapeutic proteins is limited by the poor permeability and the selectivity of the cell membrane. There is a growing effort to circumvent these problems by designing strategies to deliver full-length proteins into a large number of cells. A series of small protein domains, termed protein transduction domains (PTDs), have been shown to cross biological membranes efficiently and independently of transporters or specific receptors, and to promote the delivery of peptides and proteins into cells. TAT protein from human immunodeficiency virus (HIV-1) is able to deliver biologically active proteins in vivo and has been shown to be of considerable interest for protein therapeutics. Similarly, the third alpha-helix of Antennapedia homeodomain, and VP22 protein from herpes simplex virus promote the delivery of covalently linked peptides or proteins into cells. However, these PTD vectors display a certain number of limitations in that they all require crosslinking to the target peptide or protein. Moreover, protein transduction using PTD-TAT fusion protein systems may require denaturation of the protein before delivery to increase the accessibility of the TAT-PTD domain. This requirement introduces an additional delay between the time of delivery and intracellular activation of the protein. In this report, we propose a new strategy for protein delivery based on a short amphipathic peptide carrier, Pep-1. This peptide carrier is able to efficiently deliver a variety of peptides and proteins into several cell lines in a fully biologically active form, without the need for prior chemical covalent coupling or denaturation steps. In addition, this peptide carrier presents several advantages for protein therapy, including stability in physiological buffer, lack of toxicity, and lack of sensitivity to serum. Pep-1 technology should be extremely useful for targeting specific protein-protein interactions in living cells and for screening novel therapeutic proteins.  相似文献   

12.
Human monoclonal antibodies are promising agents for the development of more selective anticancer therapeutics. However, the tumor-targeting efficiency of most anticancer antibodies is severely limited by their poor penetration into the tumor mass. Recent studies have shown that a peptide derived from the HIV TAT protein could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. In this article, we tested by quantitative biodistribtution analysis whether conjugation to TAT peptides could improve the tumor targeting properties of scFv(L19)-Cys: an engineered human antibody fragment specific for the ED-B domain of fibronectin, a marker located in the modified extracellular matrix surrounding tumor neovasculature. Our results show that TAT peptides, consisting either of L-amino acids or D-amino acids, can efficiently transduce target cells when conjugated to fluorophores and/or antibody fragments, suggesting a receptor-independent cell entry mechanism. However, conjugation of scFv(L19)-Cys to TAT peptides resulted in a severely reduced tumor targeting performance compared to the unconjugated antibody, as measured in murine F9 teratocarcinoma-bearing mice, after intravenous injection of the radiolabeled antibody preparations. Our results outline the usefulness of TAT peptides for the efficient in vitro transduction of cells with globular proteins. In particular, the use of TAT peptides composed of D-amino acids may significantly reduce proteolytic degradation. At the same time, the poor biodistribution properties of antibody-TAT conjugates cast doubts over the applicability of this methodology for the delivery of biopharmaceuticals in vivo.  相似文献   

13.
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.  相似文献   

14.
15.
Cell-penetrating peptides (CPPs) represent a promising nonviral platform for the delivery of therapeutic cargos to cells and tissues. However, these peptides are often nonspecific, and their mechanism of action is still a subject of debate, which hinders the design of new CPPs. The alternative to rational protein design is the combinatorial approach to protein engineering, whereby large libraries of peptides are created and a screening or selection procedure is used to identify members with the desired phenotype(s). Here we describe a novel procedure for selecting peptides with a CPP phenotype using a plasmid display (PD) platform to link the peptides to their encoding DNA sequences. The PD system is based on genetic fusions to a DNA binding domain. The plasmid was designed to concomitantly express a fluorescent reporter protein to serve as a mock therapeutic cargo indicating its functional delivery into a cell. We have demonstrated this selection strategy using a control CPP (the TAT peptide) in the PC12 neuronal-like cell line. In the absence of transfection reagents, TAT was unable to deliver the protein/DNA complexes. The inclusion of the HA2 peptide from the hemagglutinin protein and the addition of polyethylenimine (PEI) were similarly ineffective. The addition of Lipofectamine, however, enabled the TAT-mediated delivery of the protein/DNA complexes, which was significantly better than control experiments without a CPP. This new PD selection platform will be a valuable new approach for use in identifying unique CPPs from randomized libraries with novel abilities and specificities.  相似文献   

16.
It has been difficult to transduce primary cultures of bone cells with proteins of interest. Here, we report the development and validation of a new technology for transduction of osteoblasts and osteoclasts with peptides and moderately sized proteins. Fusion proteins between TAT, an 11 amino acid Arg-rich sequence derived from the HIV protein, and either hemagglutinin or calcineurin Aalpha were synthesized and purified. Exposure of osteoblasts and osteoclasts in primary culture to either TAT-HA or TAT-calcineurin Aalpha resulted in a rapid (within 10 min) intracellular movement of the fusion protein evident on co-immunostaining. Almost 99% of cells were transduced and the fusion protein was retained in approximately 50% of the cells for up to 5 days. TAT did not abolish the functionality of calcineurin Aalpha; the fusion protein stimulated osteoblast differentiation and inhibited osteoclastic resorption. We expect that our studies will provide a firm basis for the future development of TAT fusion proteins for critical molecules involved in bone cell differentiation and function.  相似文献   

17.
18.
HPRP-A1 is an amphipathic α-helical anticancer peptide (ACP) derived from the N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In our previously study, HPRP-A1 has been reported that induced HeLa cell apoptosis in a caspase-dependent approach and involved both by the death receptor ‘extrinsic’ pathway and the mitochondria ‘intrinsic’ pathway. Here we report the construction of a new hybrid peptide, HPRP-A1-TAT, comprising the cell-permeating peptide TAT linked to the C-terminus of HPRP-A1. This peptide exhibits higher anticancer activity against HeLa cells with lower toxicity against human RBC than HPRP-A1. Two FITC-labeled peptides, FITC-HPRP-A1 and FITC-HPRP-A1-TAT, were used to investigate and compare the cellular uptake mechanism using fluorescence spectra and flow cytometry. Compared with HPRP-A1, HPRP-A1-TAT quickly crossed cell, entered the cytoplasm via endocytosis, and disrupted the cell membrane integrity. HPRP-A1-TAT exhibited stronger anticancer activity than HPRP-A1 at the same concentration by increasing early apoptosis of HeLa cells and inducing caspase activity. Notably, after 24 h, the cellular concentration of HPRP-A1-TAT was higher than that of HPRP-A1. This result suggests that TAT protects HPRP-A1 against degradation, likely due to its high number of positively charged amino acids or the further release of peptides into cancer cells from endocytotic vesicles. We believe that this TAT modification approach may provide an effective new strategy for improving the therapeutic index and anticancer activity of ACPs for clinical use.  相似文献   

19.
20.
Cell-penetrating peptides (CPPs) are cationic peptides which, when linked to genes, proteins, or nanoparticles, facilitate the transport of these entities across the cell membrane. Despite their potential use for gene transfer and drug delivery, the mode of action of CPPs is still mysterious. It has even been argued that the observed transport across the cell membrane is an artifact caused by chemical fixation of the cells, a common preparation method for microscopic observation. Here we have synthesized a fluorescent derivative of the HIV-1 TAT protein transduction domain [Fg-CPP(TAT(PTD))] and have observed its uptake into nonfixated living fibroblasts with time-lapse confocal microscopy, eliminating the need for fixation. We observe that Fg-CPP(TAT(PTD)) enters the cytoplasm and nucleus of nonfixated fibroblasts within seconds, arguing against the suggested artifact of cell fixation. Using differential interference contrast microscopy, dense aggregates are detected on the cell surface. Several observations suggest that these aggregates consist of Fg-CPP(TAT(PTD)) bound to membrane-associated heparan sulfate (HS). The aggregates grow in parallel with Fg-CPP(TAT(PTD)) uptake and are detected only on fibroblasts showing Fg-CPP(TAT(PTD)) uptake. These observations resemble earlier reports of "capping" of cell surface molecules combined with a polarized endocytotic flow. Enzymatic removal of extracellular HS reduced the rate of both Fg-CPP(TAT(PTD)) uptake and aggregate formation, demonstrating that HS is involved in the uptake mechanism. The functionality of the fibroblasts during the CPP uptake was investigated with a cytosensor microphysiometer measuring the extracellular acidification rate (ECAR). Short exposures (2.5 min) to the CPP reduced the ECAR which was, however, reversible upon reperfusion with buffer only. In contrast, no recovery to baseline values was observed after repeated exposures to the CPP, suggesting that the CPP is toxic in long-term applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号