首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

2.
Sperm competition appears to be an important aspect of any mating system in which individual female organisms mate with multiple males and store sperm. Post-copulatory sexual selection may be particularly important in species that store sperm throughout long breeding seasons, because the lengthy storage period may permit extensive interactions among rival sperm. Few studies have addressed the potential for sperm competition in species exhibiting prolonged sperm storage. We used microsatellite markers to examine offspring paternity in field-collected clutches of the Ocoee salamander (Desmognathus ocoee), a species in which female organisms store sperm for up to 9 months prior to fertilization. We found that 96% of clutches were sired by multiple males, but that the majority of females used sperm from only two or three males to fertilize their eggs. The high rate of multiple mating by females suggests that sperm competition is an important aspect of this mating system. Comparison of our data with those of other parentage studies in salamanders and newts reveals that multiple mating may be common in urodele amphibians. Nevertheless, the number of males siring offspring per clutch in D. ocoee did not differ appreciably from that in other species of urodeles with shorter storage periods.  相似文献   

3.
Reproductive competition may lead to a large skew in reproductive success among individuals. Very few studies have analysed the paternity contribution of individual males in spawning aggregations of fish species with huge census population sizes. We quantified the variance in male reproductive success in spawning aggregations of cod under experimental conditions over an entire spawning season. Male reproductive success was estimated by microsatellite-based parentage analysis of offspring produced in six separate groups of spawning cod. In total, 1340 offspring and 102 spawnings distributed across a spawning season were analysed. Our results show that multiple males contributed sperm to most spawnings but that paternity frequencies were highly skewed among males, with larger males on average siring higher proportions of offspring. It was further indicated that male reproductive success was dependent on the magnitude of the size difference between a female and a male. We discuss our results in relation to the cod mating system. Finally, we suggest that the highly skewed distribution of paternity success observed in cod may be a factor contributing to the low effective population size/census population size ratios observed in many marine organisms.  相似文献   

4.
In field studies of multiple mating and sperm competition there typically is no experimental control over the number of times that a female mates, the interval between matings, or the genetic identity of multiple fathers contributing to a brood. Irrespective of this complexity, high-resolution molecular markers can be used to assign paternity with considerable confidence. This study employed two highly heterozygous microsatellite loci to assess multiple paternity and sperm displacement in a sample of broods taken from a natural population of Drosophila melanogaster. The large number of alleles present at each of the loci makes it difficult to derive explicit maximum-likelihood estimates for multiple paternity and sperm displacement from brood samples. Monte Carlo simulations were used to estimate maximum-likelihood parameters for the distribution of female remating frequency and the proportion of offspring sired by the second or subsequent mating males. Estimates were made based on genotypes scored at two distinct marker loci because they were found to give statistically homogeneous results. Fitting a Poisson distribution of number of matings, the mean number of males mated by a female was 1.82. The sperm displacement parameter estimated from doubly mated females were 0.79 and 0.86 for the two loci (0.83 for the joint estimate). The overall probability that a multiply mated female will be misclassified as singly mated was only 0.006, which indicates that microsatellites can provide excellent resolution for identifying multiple mating. In addition, microsatellites can be used to generate relatively precise estimates of sperm precedence in brood-structured samples from a natural population.  相似文献   

5.
Although theory generally predicts that males should reduce paternal care in response to cues that predict increased sperm competition and decreased paternity, empirical patterns are equivocal. Some studies have found the predicted decrease in male care with increased sperm competition, while even more studies report no effect of paternity or sperm competition on male care. Here, we report the first example, to our knowledge, of paternal care increasing with the risk and intensity of sperm competition, in the ocellated wrasse (Symphodus ocellatus). Theory also predicts that if paternal care varies and is important to female fitness, female choice among males and male indicators traits of expected paternal care should evolve. Despite a non-random distribution of mating success among nests, we found no evidence for female choice among parental males. Finally, we document the highest published levels of extra-pair paternity for a species with exclusive and obligate male care: genetic paternity analyses revealed cuckoldry at 100 per cent of nests and 28 per cent of all offspring were not sired by the male caring for them. While not predicted by any existing theory, these unexpected reproductive patterns become understandable if we consider how male and female mating and parental care interact simultaneously in this and probably many other species.  相似文献   

6.
Reproductive strategies in snakes   总被引:11,自引:0,他引:11  
Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.  相似文献   

7.
In the Australian redback spider, Latrodectus hasselti, males typically use their paired copulatory organs (palps) to copulate twice with a single female then sacrifice themselves to their cannibalistic mates in a strategy that increases their paternity in that one mating, but leads to death. This type of terminal investment in one mating is predicted only if the expected value of future matings is low for males relative to the value of repeated mating with the same female. In this laboratory study, we quantified the reproductive value of mating more than once with the same female (repeated mating) and mating with more than one female (multiple mating) for male redback spiders. We tested two natural selection hypotheses for repeated mating, sperm limitation and reproductive insurance, but found no support for either hypothesis. We show that, in the absence of sperm competition or cannibalism, male lifetime reproductive output is the same whether a male copulates once, twice, or several times with a given female. Repeated mating does not increase the probability of successful fertilization, nor does it increase the number of offspring produced in successful matings. Although male repeated mating is not favoured because of increased fertility of mates, other studies suggest it may be important in sperm competition. Here we show that the relative reproductive value of the first two copulations is very high for redback males because they are functionally sterile after each palp has been used once; nonvirgin males are unable to father offspring. Functional sterility and repeated mating by male redbacks may be favoured by the same factors that lead to male sacrifice behaviour: ecological constraints on multiple mating combined with competitive benefits of maximal investment in the first mating. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

8.
In the adder ( Vipera berus) multiple inseminations during the spring mating season have been demonstrated, with fertilization taking place several weeks after mating activities have ceased. Subsequent sperm competition in the female reproductive tract can result in within-season mixed paternity. Prolonged sperm storage between mating seasons has been suggested as another mechanism of sperm competition in the adder. Competition between new and old spermatozoa would obstruct efforts to reveal reproductive strategies that correlate observed behaviour to paternity in natural populations. In the present study, controlled breeding experiments with adders were performed and DNA fingerprinting was used to determine paternity among all offspring of a total of 15 litters. The offspring of 11 large females, that had most probably also mated in a previous season, were sired exclusively by enclosure males. This result and earlier empirical data support the hypothesis that long-term sperm storage, over one or several reproductive cycles, does not occur in the adder.  相似文献   

9.
Promiscuous systems where both males and females mate several times with different individuals are widespread among mammalian species. As a consequence, females obtain sperm from more than one male and paternity is decided by sperm competition. In theory, females might gain ‘genetic benefits’ for their offspring from this mechanism. In a mating experiment we now demonstrate in the promiscuous rodent Galea musteloides that females which were paired with four males, and became pregnant, weaned more surviving offspring than females which were paired with a single male. Litter sizes did not differ between the two groups. The data support the hypothesis that promiscuous females copulate with several males to induce sperm competition and/or to enforce cryptic female choice and thereby increase the viability of their offspring.  相似文献   

10.
To capture how sexual selection shapes male reproductive success across different stages of reproduction in Tribolium castaneum (Coleoptera, Tenebrionidae), we combined sequential sperm defence (P1) and sperm offence (P2) trials with additional trials where both males were added simultaneously to the female. We found a positive correlation between the relative paternity share in simultaneous male–male competition trials and the P2 trial. This suggests that males preferred by females as sires achieve superior fertilization success during sperm competition in the second male position. In simultaneous male–male competition trials, where pre‐, peri‐ and postcopulatory sexual selection were all allowed to act, the relative paternity share of preferred males was more than 20% higher than in P2 sperm competition trials where precopulatory female choice was disabled. Additional behavioural observations revealed that mating with more attractive males resulted significantly more frequently in offspring production than mating with less attractive males. Thus, by comparing male fertilization success in trials where precopulatory choice was turned off with more inclusive estimates of fertilization success where pre‐ and pericopulatory choice could occur, we show that female mate choice may effectively inhibit sperm competition. Female mate choice and sperm competition (P2) are positively correlated, which is consistent with directional sexual selection in this species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 67–75.  相似文献   

11.
Sexual selection is an important force driving the evolution of morphological and genetic traits. To determine the importance of male-male, postcopulatory sexual selection in natural populations of house mice, we estimated the frequency of multiple paternity, defined as the frequency with which a pregnant female carried a litter fertilized by more than one male. By genotyping eight microsatellite markers from 1095 mice, we found evidence of multiple paternity from 33 of 143. Evidence for multiple paternity was especially strong for 29 of these litters. Multiple paternity was significantly more common in higher-density vs. lower-density populations. Any estimate of multiple paternity will be an underestimate of the frequency of multiple mating, defined as the frequency with which a female mates with more than a single male during a single oestrus cycle. We used computer simulations to estimate the frequency of multiple mating, incorporating observed reductions in heterozygosity and levels of allele sharing among mother and father. These simulations indicated that multiple mating is common, occurring in at least 20% of all oestrus cycles. The exact estimate depends on the competitive skew among males, a parameter for which we currently have no data from natural populations. This study suggests that sperm competition is an important aspect of postcopulatory sexual selection in house mice.  相似文献   

12.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

13.

Within captive management programs for species of conservation concern, understanding the genetic mating system is of fundamental importance, given its role in generating and maintaining genetic diversity and promoting opportunities for sperm competition. If a goal of a conservation program is reintroduction, knowledge of the mating system may also inform prediction models aimed at understanding how genetic diversity may be spatially organized, thus informing decisions regarding where and which individuals should be released to maximize genetic diversity in the wild population. Within captive populations, such information may also influence how animals are maintained in order to promote natural behaviors. Here we investigate the genetic mating system of the Guatemalan beaded lizard, Heloderma charlesbogerti, a member of an entire clade lacking such information. A group of adult male and female H. charlesbogerti co-habited a large outdoor enclosure for five years during the species’ perceived breeding season. Through genomic parentage analysis, 50% of clutches comprising multiple offspring were found to result from multiple paternity, with up to three males siring offspring within single clutches. Both males and females were observed to produce offspring with multiple partners within a given year. As such, within this captive environment, where opportunities existed for mating with multiple partners, the genetic mating system was found to be highly polygamous, with multiple paternity common within clutches. These findings are novel for the family Helodermatidae, and the results have broader implications about how reproductive opportunities should be managed within captive conservation programs.

  相似文献   

14.
Post-copulatory paternity biases after female multiple mating are major constraints on both male and female reproductive systems. The outcome of paternity in certain situations is only controlled directly by male sperm stock. This was tested experimentally in the parasitoid wasp Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), in which sperm stocks are small (several hundred) and the fertilizing efficiency of stored sperm is high (the ratio of sperm stored/fertilized eggs is about 0.75). Sperm in seminal vesicles and paternity of males of different status (virgin young, virgin old, or young previously mated) were measured after female single and double mating. The amount of sperm in the seminal vesicle differed according to male status (increasing from previously mated males to old males), but there was no difference in sperm stored by females after a single mating. In double mating experiments with two males of different status, paternity increased linearly with the relative amount of sperm in seminal vesicles. Paternity distribution conforms to 'a fair raffle' of sperm from both donors following complete mixing of sperm prior to fertilization. Thus, in a female multiple mating context, male fitness depends principally on their sperm stock, which in turn depends on life history parameters, such as age and previous mating.  相似文献   

15.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

16.
We investigated multiple paternity and sperm precedence in the Amarillo fish, Girardinichthys multiradiatus (Goodeidae). We allowed females to mate with two different-sized males consecutively and assessed the paternity of the ensuing broods using allozyme electrophoresis. We presented one-half of the females the larger, and the other half the smaller, male first. Allozyme variation among individuals was low, yielding conservative estimates of multiple paternity. Half the broods were of mixed paternity, but one male always sired more than 70% of the embryos in each brood. The proportion of the brood sired was not related to mating sequence, but when we classified males by relative size, the larger male of each pair usually fathered greater proportions of offspring than the smaller male. This association disappeared when we used the actual size of the males in the analysis. Instead, for any pair of males, the difference in number of offspring sired was correlated to differences in the rate of courtship displays, rather than size differences, suggesting that courtship intensity is a better predictor of paternity than male size. Within a pair, the larger male usually displayed more than the smaller one, but there was no correlation between male size and display rate across all males. Parsimony suggests a correlation between courtship rate and sperm production, but we cannot rule out the possibility that females allocate paternity according to the relative merits of the males.  相似文献   

17.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

18.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

19.
Mating system variation and morph fluctuations in a polymorphic lizard   总被引:2,自引:1,他引:1  
In polymorphic male painted dragon lizards (Ctenophorus pictus), red males win staged contests for females over yellow males, and yellow males have greater success in staged sperm competition trials than red males. This predicts different reproductive strategies in the wild with red males being more coercive or better mate guarders than yellow males. Yellow males would be expected to sire more offspring per copulation and have a greater proportion of offspring from clutches with mixed paternity. However, here we show using microsatellites that the frequency of mixed paternity in the wild is low (< 20% on average across years), that all morphs on average have the same number of offspring sired per year, and that mating system variation (polyandry vs. monandry) is strongly correlated with perch density on male territories. Furthermore, a logistic regression on male successful vs. unsuccessful mate acquisition showed that red males were under negative selection when they dominated the population, which suggests ongoing frequency dependent selection on male colouration.  相似文献   

20.
Scramble competition polygyny is expected when females and/or resources are widely dispersed and not easily monopolized by males, or when there is an abundance of mates during an extremely restricted reproductive period. Additional factors such as first male sperm precedence or low female re-mating rate might further explain the propensity of males to engage in scramble competition. The sexually cannibalistic praying mantid Pseudomantis albofimbriata exhibits a polygynous mating system, where females exist in low-density populations and male competition manifests as the race to find females rather than as direct physical fighting. Here, we aim to determine whether there is a paternity advantage for the first-male to mate and/or a low frequency of female re-mating. First, we determined sperm precedence patterns in P. albofimbriata using the sterile male technique. Second, we tested the likelihood of female re-mating in P. albofimbriata by comparing the close-range approach behaviour and frequency of successful mating attempts for males when paired with virgin as opposed to recently mated females, and by comparing the frequency of long-distance male attraction between virgin and mated females. We found no paternity advantage for the first male to mate, rather a second male advantage. Although mated females were not rejected by males when approached from close-range, they were chemically unattractive to males searching from a distance. Since initial mate attraction in many praying mantids, including P. albofimbriata, is mediated via long-distance chemical communication, we believe the latter result is more ecologically relevant and therefore more important. These results suggest that the relatively low frequency of female re-mating observed in P. albofimbriata may be an additional factor driving scramble competition in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号