首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Hydroxybutyrate (GHB) is an endogenous metabolite of mammalian brain which is derived from GABA. Much evidence favours its role as an endogenous neuromodulator, synthesized, stored and released at particular synapses expressing specific receptors. One key step for GHB involvement in neurotransmission is its uptake by a specific population of synaptic vesicles. We demonstrate that this specific uptake exists in a crude synaptic vesicle pool obtained from rat brain. The kinetic parameters and the pharmacology of this transport are in favour of an active vesicular uptake system for GHB via the vesicular inhibitory amino acid transporter. This result supports the idea that GABA and GHB accumulate together and are coliberated in some GABAergic synapses of the rat brain, where GHB acts as a modulatory factor for the activity of these synapses following stimulation of specific receptors.  相似文献   

2.
Gamma-hydroxybutyric acid (GHB) is a drug of abuse, a therapeutic, and purportedly a neurotransmitter with a complex mechanism of action in vivo due to direct actions at GABA(B) as well as GHB receptors and because of its metabolism to GABA. Herein, we describe 3-ethers of 3-hydroxyphenylacetic acid, which have relatively high affinity at GHB sites, no significant affinity at GABA receptors, and would not be expected to be rapidly metabolized to GABAergic ligands. The selectivity of these compounds (UMB108, UMB109, and UMB119) could prove to be useful for studying the biology of GHB receptors, free from GABAergic effects.  相似文献   

3.
γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.  相似文献   

4.
gamma-Hydroxybutyrate (GHB) fulfills the main criteria of a neurotransmitter: it is unevenly distributed in C.N.S.; it is synthesized from succinic semi-aldehyde by a specific semi-aldehyde succinic reductase localized in neurons, in some dendrites and synaptic terminals; GHB is released by tissue slice depolarization, this release being reduced by 50-60% in a Ca++ free medium. Tetrodotoxin and verapamil strongly inhibited the depolarization evoked-release; high affinity heterogenously distributed binding sites for gamma-hydroxybutyrate exist in the brain. This binding does not require Na+. The bound gamma-hydroxybutyric acid is not displaceable by GABA or GABA agonists. Binding sites are enriched in the synaptosomal fraction; after micro-iontophoretic application, GHB exerts a depressant action on nigral and neocortical cells which is resistant to the presence of bicuculline methiodide. In neuronal cultures, GHB causes a hyperpolarization similar to that produced by GABA; high affinity uptake system for GHB exists both in purified plasma membrane vesicles and in brain tissue slices. This uptake is dependent on an Na+ gradient and is inhibited by ouaba?n and dinitrophenol; GABA does not modify GHB uptake by rat brain slices; GABA derived GHB has a turnover time almost three times faster than that of whole brain serotonin, 6-8 times as rapid as that of whole brain dopamine and 13-19 times as rapid as that of whole brain norepinephrine.  相似文献   

5.
In many brain regions, Ca(2+) influx through presynaptic P2X receptors influences GABA release from interneurones. In patch-clamp recordings of Purkinje cells (PCs) in rat cerebellar slices, broad spectrum P2 receptor antagonists, PPADS (30microM) or suramin (12microM), result in a decreased amplitude and increased failure rate of minimal evoked GABAergic synaptic currents from basket cells. The effect is mimicked by desensitizing P2X1/3-containing receptors with alpha,beta-methylene ATP. This suggests presynaptic facilitation of GABA release via P2XR-mediated Ca(2+) influx activated by endogenously released ATP. In contrast, activation of P2Y4 receptors (using UTP, 30microM, but not P2Y1 or P2Y6 receptor ligands) results in inhibition of GABA release. Immunological studies reveal the presence of most known P2Rs in >or=20% of GABAergic terminals in the cerebellum. P2X3 receptors and P2Y4 receptors occur in approximately 60% and 50% of GABAergic synaptosomes respectively and are localized presynaptically. Previous studies report that PC output is also influenced by postsynaptic purinergic receptors located on both PCs and interneurones. The high Ca(2+) permeability of the P2X receptor and the ability of ATP to influence intracellular Ca(2+) levels via P2Y receptor-mediated intracellular pathways make ATP the ideal transmitter for the multisite bidirectional modulation of the cerebellar cortical neuronal network.  相似文献   

6.
By using Gas Chromatography-Mass Spectrometry high concentrations of endogenous gamma-hydroxybutyric acid (GHB) have been demonstrated in the rat and mouse gastrointestinal tract, including stomach, small intestine and colon-rectum. GHB concentrations were many folds higher than those present in the brain. High GHB concentrations have been also found in the human operatory specimen of sigmoid colon. Since GHB administration has been found to modify gastrointestinal motility via GABA(B) receptors, the present results suggest that endogenous GHB might be involved in the GABA(B) receptor-mediated control of gastrointestinal function.  相似文献   

7.
Abstract— The metabolism of γ-hydroxybutyrate (GHB) was studied by following the fate of [1-14C]GHB in mouse brain after an intravenous injection. Cerebral uptake of GHB was rapid and this substance disappeared from brain tissue with a half-life of approx 5 min. Degradation of [1-14C]GHB took place in the brain since 14C was incorporated in amino acids associated with the tricarboxylic acid cycle: the labelling pattern was consistent with the oxidation of GHB via succinate through the cycle, rather than with β-oxidation of GHB. Conversion of [14C]GHB into [14C]GABA prior to oxidation was negligible, thus it is unlikely that the pharmacological action of GHB would be mediated through GABA formation. [14C]GHB oxidation also elicited the signs of metabolic compartmentation of the tricarboxylic acid cycle in the brain (glutamine/glutamate specific radioactivity ratio was about 4).  相似文献   

8.
gamma-Hydroxybutyrate (GHB) is a putative neurotransmitter in brain. We have already demonstrated that it is transformed into gamma-aminobutyrate (GABA) by rat brain slices incubated under physiological conditions. This conversion occurs via a GABA-transaminase reaction. Therefore, succinic semialdehyde, the oxidative derivative of GHB, appears to be the primary catabolite of GHB degradation. Apparently, the kinetic characteristics and pH optimum of GHB dehydrogenase (high Km aldehyde reductase) in vitro do not favor a role for this enzyme in endogenous brain GHB oxidation. However, in the presence of glucuronate, glutamate, NADP and pyridoxal phosphate, pure GHB dehydrogenase, coupled to purified GABA-transaminase does produce GABA from GHB at an optimum pH close to the physiological value and with a low Km for GHB.  相似文献   

9.
Recently sufficient evidence has accumulated to propose that a central GABAergic dysfunction may be primarily related to the pathology of affective disorders and that antidepressant mechanisms (pharmacological or electroconvulsive therapy, ECT) have an intrinsic GABAergic component. In depressed patients GABA levels are reported to be low in the CSF and plasma, and GABA synthesis is decreased in some brain areas, including the frontal cortex. GABAmimetics such as progabide and fengabine exert a therapeutic effect in depression. In behavioural laboratory models GABAmimetics exhibit antidepressant-like actions in the olfactory bulbectomized rat and in rats submitted to an inescapable shock (learned helplessness). Furthermore, antidepressant GABAmimetics decrease paradoxical sleep. In the olfactory bulbectomized rat, GABAB receptors are downregulated in the frontal cortex and in the learned helplessness model, GABA release is diminished in the hippocampus. These decreases are reversed by antidepressants in parallel with their behavioural activities. An intrinsic activity of widely varied antidepressants and ECT is the upregulation of GABAB receptors in the frontal cortex. This, together with the downregulation of beta-adrenergic receptors induced by these compounds, and the GABAB modulation of the beta-adrenergic second messenger system, strongly suggest that both GABAergic and beta-adrenergic responses are inherent to an antidepressant effect.  相似文献   

10.
Fast synaptic inhibition in the brain is largely mediated by ionotropic GABA receptors, which can be subdivided into GABAA and GABAC receptors based on pharmacological and molecular criteria. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. In addition, modulating the efficacy of GABAergic neurotransmission may play a key role in neuronal plasticity. Recent studies have begun to reveal that the accumulation of ionotropic GABAA receptors at synapses is a highly regulated process that is facilitated by receptor-associated proteins and other cell-signaling molecules. This review focuses on recent experimental evidence detailing the mechanisms that control the assembly and transport of functional ionotropic GABAA receptors to cell surface sites, in addition to their stability at synaptic sites. These regulatory processes will be discussed within the context of the dynamic modulation of synaptic inhibition in the central nervous system (CNS).  相似文献   

11.
Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor   总被引:1,自引:0,他引:1  
gamma-Hydroxybutyric acid (GHB) is a naturally occurring metabolite of GABA that has been postulated to exert ubiquitous neuropharmacological effects through GABA(B) receptor (GABA(B)R)-mediated mechanisms. The alternative hypothesis that GHB acts via a GHB-specific, G protein-coupled presynaptic receptor that is different from the GABA(B)R was tested. The effect of GHB on regional and subcellular brain adenylyl cyclase in adult and developing rats was determined and compared with that of the GABA(B)R agonist (-)-baclofen. Also, using guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding and low-K:(m) GTPase activity as markers the effects of GHB and (-)-baclofen on G protein activity in the brain were determined. Neither GHB nor baclofen had an effect on basal cyclic AMP (cAMP) levels. GHB significantly decreased forskolin-stimulated cAMP levels by 40-50% in cortex and hippocampus but not thalamus or cerebellum, whereas (-)-baclofen had an effect throughout the brain. The effect of GHB on adenylyl cyclase was observed in presynaptic and not postsynaptic subcellular tissue preparations, but the effect of baclofen was observed in both subcellular preparations. The GHB-induced alteration in forskolin-induced cAMP formation was blocked by a specific GHB antagonist but not a specific GABA(B)R antagonist. The (-)-baclofen-induced alteration in forskolin-induced cAMP formation was blocked by a specific GABA(B)R antagonist but not a specific GHB antagonist. The negative coupling of GHB to adenylyl cyclase appeared at postnatal day 21, a developmental time point that is concordant with the developmental appearance of [(3)H]GHB binding in cerebral cortex, but the effects of (-)-baclofen were present by postnatal day 14. GHB and baclofen both stimulated [(35)S]GTPgammaS binding and low-K:(m) GTPase activity by 40-50%. The GHB-induced effect was blocked by GHB antagonists but not by GABA(B)R antagonists and was seen only in cortex and hippocampus. The (-)-baclofen-induced effect was blocked by GABA(B)R antagonists but not by GHB antagonists and was observed throughout the brain. These data support the hypothesis that GHB induces a G protein-mediated decrease in adenylyl cyclase via a GHB-specific G protein-coupled presynaptic receptor that is different from the GABA(B)R.  相似文献   

12.
The gamma-aminobutyric acid (GABA) metabolite gamma-hydroxybutyric acid (GHB) shows a variety of behavioural effects when administered to animals and humans, including reward/addiction properties and absence seizures. At the cellular level, these actions of GHB are mediated by activation of neuronal GABAB receptors (GABABRs) where it acts as a weak agonist. Because astrocytes respond to endogenous and exogenously applied GABA by activation of both GABAA and GABABRs, here we investigated the action of GHB on astrocytes on the ventral tegmental area (VTA) and the ventrobasal (VB) thalamic nucleus, two brain areas involved in the reward and proepileptic action of GHB, respectively, and compared it with that of the potent GABABR agonist baclofen. We found that GHB and baclofen elicited dose-dependent (ED50: 1.6 mM and 1.3 µM, respectively) transient increases in intracellular Ca2+ in VTA and VB astrocytes of young mice and rats, which were accounted for by activation of their GABABRs and mediated by Ca2+ release from intracellular store release. In contrast, prolonged GHB and baclofen exposure caused a reduction in spontaneous astrocyte activity and glutamate release from VTA astrocytes. These findings have key (patho)physiological implications for our understanding of the addictive and proepileptic actions of GHB.  相似文献   

13.
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.  相似文献   

14.
In addition to its role in the adult mammalian nervous system as an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) is involved in the proliferation, differentiation, and migration of several kinds of cells including cancer cells. GABA is synthesized predominantly from glutamate by glutamate decarboxylase and exerts its effects via ionotropic GABA(A) receptors and/or metabotropic GABA(B) receptors. In this review, the current state of knowledge regarding the role of the GABAergic system in peripheral nonneuronal cell proliferation is described, and recent advances in elucidation of the mechanisms leading to cell proliferation are discussed.  相似文献   

15.
Gamma-hydroxybutyrate (GHB) is both a therapeutic agent and a recreative drug. It has sedative, anxiolytic and euphoric effects. These effects are believed to be due to GHB-induced potentiation of cerebral GABAergic and dopaminergic activities, but the serotonergic system might also be involved. In this study, we examine the effects of pharmacological doses of GHB on the serotonergic activity in rat brain. Administration of 4.0 mmol/kg i.p. GHB to rats induces an accumulation of tryptophan and 5-HIAA (5-hydroxyindole acetic acid) in the frontal cortex, striatum and hippocampus without causing significant change in the tissue serotonin content. In the extracellular space, GHB induced a slight decrease in serotonin release. The tryptophan and 5-HIAA accumulation induced by GHB is mimicked by the GHB receptor agonist para-chlorophenyl-transhydroxycrotonate (NCS-356) and blocked by NCS-382 (6,7,8,9-tetrahydro-5-[H]-benzocycloheptene-5-ol-4-ylidene acetic acid) a selective GHB receptor antagonist. GHB induces the accumulation of either a derivative of or [3H]-tryptophan itself in the extracellular space, possibly by increasing tryptophan transport across the blood-brain barrier. The blood content of certain neutral amino-acids, including tryptophan, is also increased by peripheral GHB administration. Some of the effect of GHB could be reproduced by baclofen and reduced by the GABAB antagonist CGP 35348. Taken together, these results indicate that the GHB-induced stimulation of tissue serotonin turnover may be due to an increase in tryptophan transport to the brain and in its uptake by serotonergic cells. As the serotonergic system may be involved in the regulation of sleep, mood and anxiety, the stimulation of this system by high doses of GHB may be involved in certain neuropharmacological events induced by GHB administration.  相似文献   

16.
Ganguly K  Schinder AF  Wong ST  Poo M 《Cell》2001,105(4):521-532
GABA is the main inhibitory neurotransmitter in the adult brain. Early in development, however, GABAergic synaptic transmission is excitatory and can exert widespread trophic effects. During the postnatal period, GABAergic responses undergo a switch from being excitatory to inhibitory. Here, we show that the switch is delayed by chronic blockade of GABA(A) receptors, and accelerated by increased GABA(A) receptor activation. In contrast, blockade of glutamatergic transmission or action potentials has no effect. Furthermore, GABAergic activity modulated the mRNA levels of KCC2, a K(+)-Cl(-) cotransporter whose expression correlates with the switch. Finally, we report that GABA can alter the properties of depolarization-induced Ca(2+) influx. Thus, GABA acts as a self-limiting trophic factor during neural development.  相似文献   

17.
Gamma-Hydroxybutyric acid (GHB) has gained in notoriety in recent years due to its association with sexual assaults. GHB is an endogenous ligand for GHB receptors, but its complete pharmacological mechanism of action in vivo remains unclear due to apparent GABAergic components. It has been proposed that the hydroxyl group in the 4-position acts as a hydrogen bond donor to the GHB receptor. Herein we show that 3-chloropropanoic acid possesses significant affinity for the GHB receptor, has no affinity for GABA receptors, and cannot undergo metabolism to GABAergic compounds. UMB66 is thus a selective agent for the study of GHB in vivo. These results, in combination with data from quantum mechanical calculations, suggest that the hydroxyl group of GHB actually acts as a hydrogen bond acceptor in contrast to the currently accepted model. This finding is anticipated to facilitate the rational design of novel agents with selectivity for GHB receptors that may be used to elucidate the mechanism of action of this common drug of abuse.  相似文献   

18.
The existence of specific gamma-aminobutyric acid (GABA)ergic receptors in testicular interstitial cells was investigated in the present study. Specific binding of [3H]GABA to interstitial cell membranes was found to be time- and temperature-dependent and varied according to Ca2+ concentration present in the incubation medium. We analyzed the ability of different GABAergic agonists and antagonists to displace the bound radioactivity. In the absence of Ca2+ (1 mM EDTA), GABA and the GABAergic agonist isoguvacine displaced the bound radioactivity. When the radioligand assay was performed in the presence of 2.5 mM CaCl2, the [3H]GABA specifically bound increased twofold. Under such conditions, the specific GABAergic agonist baclofen, as well as GABA and isoguvacine, displaced the [3H]GABA bound. Saturation analysis revealed the presence of a population of GABAA binding sites with a KD value of 45.2 nM and a maximal number of binding sites of 57.4 fmol/mg of protein. The maximal binding increased on addition of 2.5 mM CaCl2 to 102 fmol/mg of protein, indicating the existence of a second population of GABAergic receptors, i.e., type B, with essentially the same affinity. In addition, the incubation of testicular interstitial cells with GABA and baclofen resulted in an increase in androgen production. These results support a functional role of GABA in the neuroendocrine control of the male gonad.  相似文献   

19.
GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.  相似文献   

20.
gamma-Hydroxybutyrate (GHB) naturally occurs in the brain, but its exogenous administration induces profound effects on the central nervous system in animals and humans. The intracellular signaling mechanisms underlying its actions remain unclear. In the present study, the effects of GHB on the activation (phosphorylation) of mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase 1 and 2 (ERK1/2), were investigated. Acute administration of GHB (500 mg/kg, intraperitoneal) induced a fast and long lasting inhibition of MAP kinase phosphorylation in both frontal cortex and hippocampus. The reduced MAP kinase phosphorylation was observed in the CA1 and CA3 areas but not in the dentate gyrus. Pretreatment with the specific gamma-aminobutyric acid, type B (GABAB), receptor antagonist CGP56999A (20 mg/kg, intraperitoneal) prevented the action of GHB, and the effect of GHB was mimicked by baclofen, a selective GABAB receptor agonist, whereas the high affinity GHB receptor antagonist NCS-382 (200 mg/kg, intraperitoneal) had no effect on GHB-inhibited MAP kinase phosphorylation. Moreover, the GHB dehydrogenase inhibitor valproate (500 mg/kg, intraperitoneal), which inhibits the conversion of GHB into GABA, failed to block the effect of GHB on MAP kinase phosphorylation. Altogether, these data suggest that GHB, administered in vivo, reduces MAP kinase phosphorylation via a direct activation of GABAB receptors by GHB. In contrast, GHB (10 mm for 15 min) was found ineffective on MAP kinase phosphorylation in brain slices, indicating important differences in the conditions required for the second messenger activating action of GHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号