首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
While most spiders are solitary and opportunistically cannibalistic, a variety of social organisations has evolved in a minority of spider species. One form of social organisation is subsociality, in which siblings remain together with their parent for some period of time but disperse prior to independent reproduction. We review the literature on subsocial and maternal behaviour in spiders to highlight areas in which subsocial spiders have informed our understanding of social evolution and to identify promising areas of future research. We show that subsocial behaviour has evolved independently at least 18 times in spiders, across a wide phylogenetic distribution. Subsocial behaviour is diverse in terms of the form of care provided by the mother, the duration of care and sibling association, the degree of interaction and cooperation among siblings, and the use of vibratory and chemical communication. Subsocial spiders are useful model organisms to study various topics in ecology, such as kin recognition and the evolution of cheating and its impact on societies. Further, why social behaviour evolved in some lineages and not others is currently a topic of debate in behavioural ecology, and we argue that spiders offer an opportunity to untangle the ecological causes of parental care, which forms the basis of many other animal societies.  相似文献   

2.
Crab spiders (Thomisidae) are known by their ability to change their body colouration via change in epithelial pigments. However, the crab spider genus Stephanopis appears to match the colouration of the bark they are sitting on by having debris attached to its dorsal cuticle. The functional morphology, colouration, and evolution of this phenomenon were investigated in Stephanopis cf. scabra and S. cambridgei. Analysis under the microscope revealed that debris originated from the bark they were sitting on. Using scanning electron microscopy, three different types of setae likely related in the retention of debris were found in S. cf. scabra and one in S. cambridgei. These setae are branched and possess barbs, unlike the more filiform setae found in other crab spider species. In addition, the presence of debris improved the brightness background matching of spiders against the bark, but not hue and chroma matching. Ancestral character state reconstruction suggested that presence of debris evolved two to three times within Thomisidae. The evolution of both masking and colour change among crab spiders indicates that they are under a strong selection to avoid detection.  相似文献   

3.
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.  相似文献   

4.
Burrow‐digging organisms act as ecosystem engineers, providing potential habitat to other organisms. In the Mid North region of South Australia, wolf and trapdoor spiders in fragmented grassland communities provide this service. Pygmy bluetongue lizards are an endangered skink, endemic to these grasslands. The lizards obligatorily use burrows dug by these spider groups as refuges, basking sites and ambush points. We investigated the occupancy of these spider burrows by lizards and other organisms within the grassland community, identifying the occasions that burrows were shared by multiple taxa. We found that the lizards and trapdoor spiders are predominantly solitary, while wolf spiders co‐shared burrows more frequently with either weevils or snails. There were numerous taxa that were found to regularly co‐share with other taxa, particularly snails, centipedes and weevils. There was a strong temporal influence on burrow sharing, with most co‐sharing occurring late in summer. This study provides an insight into the use of burrows by the lizards and co‐existing taxa within these grassland communities. The dynamics of burrow‐use by other taxa have the potential to influence long‐term conservation of these lizards as burrow availability is crucial to their survival in these grasslands.  相似文献   

5.
为褐飞虱Nilaparvata lugens(Stal)的绿色防控提供理论参考依据,于2011年和2012年在调查了浙江富阳不同品种稻田褐飞虱和蜘蛛的发生密度后,利用荧光定量PCR分子探针技术分析了9科27种3 807头蜘蛛对褐飞虱的捕食作用。研究结果表明,在水稻Oryza sativa L.不同生育期,稻田总的褐飞虱和蜘蛛密度等参数值均随调查时间呈规律性变化,且在调查时间点间出现了显著性差异(P<0.05);各科蜘蛛对褐飞虱的捕食阳性率均随水稻生育期的发展呈增加趋势,整体上,狼蛛科Lycosidae、皿蛛科Linyphiidae、球腹蛛科Theridiidae、肖蛸科Tetragnathidae、跳蛛科Salticidae和园蛛科Araneidae捕食率在DAT21,DAT35和DAT77,DAT91之间有显著性差异(P<0.05);2012年两品种稻田的褐飞虱和蜘蛛密度等参数值均显著高于2011年的值,两年间汕优63(SY63)稻田的褐飞虱和蜘蛛密度均显著高于IR64的密度;2012年各科蜘蛛对褐飞虱的捕食阳性率显著高于2011年的值(P<0.05),且狼蛛科和球腹蛛科对褐飞虱的捕食阳性率在两品种间存在显著性差异(P<0.05);稻田4种蜘蛛优势种拟环纹豹蛛Pardosa pseudoannulata (Bosenberg & Strand)、八斑球腹蛛Theridion octomaculatum (Boes. et Str.)、食虫瘤胸蛛Oedothorax insecticeps (Boes. et str.)和锥腹肖蛸Tetragnatha maxillosa (Thoren)的捕食阳性率均随褐飞虱种群密度的增加而增加,该捕食功能反应曲线可用非线性模型P=aN/(1+bN)拟合;除锥腹肖蛸外,其它3种的捕食功能反应曲线均呈饱和状态;拟环纹豹蛛捕食褐飞虱的DNA残留量显著高于八斑球腹蛛、锥腹肖蛸和食虫瘤胸蛛的残留量(P<0.05)。本研究结果充分说明稻田各蜘蛛类群对不同生育期、不同品种水稻的褐飞虱均具有较强的捕食作用,是生物防治策略中的重要因素,应加强田间蜘蛛的保护工作和增强自然天敌的控害功能。  相似文献   

6.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

7.
The male reproductive systems of spiders are highly diverse in structure across all major spider taxa. Little is known about this organ system in basal araneomorph spiders, especially Austrochiloidea; such knowledge is necessary for a more complete understanding of the evolutionary morphology of the male reproductive system in spiders. In the present study, we describe the male reproductive system of an austrochilid spider, the enigmatic troglophilic Tasmanian cave spider Hickmania troglodytes, using light and electron microscopic techniques. The male reproductive system consists of tubular testes leading into convoluted deferent ducts, which are fused close to the genital opening to an unpaired ejaculatory duct. Spermatogenesis occurs only in the subadult testes, whereas adult testes showed neither spermatogenic stages nor any generative tissue in all investigated specimens. The testes of adult males are drastically reduced in size compared with those of subadult males, but the deferent ducts are filled with large numbers of mature spermatozoa. Thus, our data suggest that males of H. troglodytes are sperm‐limited, but not necessarily sperm‐depleted as described for certain orb‐weaving spiders. Due to the absence of generative tissue, limited sperm production is permanent (PSL) and probably has an influence on the reproductive strategies in this species. As nearly no data are available on the life history of H. troglodytes, and in particular information on the phenology of males is lacking, implications of the evolution of PSL in this species are unclear. Nonetheless, our data on other representatives of Austrochilidae (Austrochilus forsteri, Thaida chepu) and Gradungulidae (Progradungula otwayensis) suggest that PSL evolved within Austrochiliodea only in H. troglodytes and might be an adaptation to its troglophilic lifestyle.  相似文献   

8.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

9.
The evolution of a visual signal will be affected by signaler and receiver behavior, and by the physical properties of the environment where the signal is displayed. Crab spiders are typical sit‐and‐wait predators found in diverse ambush sites, such as tree bark, foliage, and flowers. Some of the flower‐dweller species present a UV+‐white visual lure that makes them conspicuous and attractive to their prey. We hypothesized that UV+‐white coloration was associated with the evolution of a flower‐dwelling habit. In addition, following up on results from a previous study we tested whether the UV+‐white coloration evolved predominantly in flower‐dwelling species occurring in Australia. We measured the reflectance of 1149 specimens from 66 species collected in Australia and Europe, reconstructed a crab spider phylogeny, and applied phylogenetic comparative methods to test our hypotheses. We found that the flower‐dwelling habit evolved independently multiple times, and that this trait was correlated with the evolution of the UV+‐white coloration. However, outside Australia non‐flower‐dwelling crab spiders also express a UV+‐white coloration. Therefore, UV+‐white reflectance is probably a recurring adaptation of some flower dwellers for attracting pollinators, although it may have other functions in non‐flower dwellers, such as camouflage.  相似文献   

10.
11.
Evolution of cooperation and group living in spiders from subsocial family groups may be constrained by their cannibalistic nature. A tendency to avoid cannibalizing kin may facilitate tolerance among spiders and implies the ability to identify relatives. We investigated whether the subsocial spider Stegodyphus lineatus discriminates kin by recording cannibalism among juveniles in experiments during which amount of food and size difference among spiders in groups were varied. We hypothesized that family groups should be less cannibalistic than groups of mixed‐parental origin. Further, we tested whether food‐stress would influence cannibalism rates differently in kin and nonkin groups and the effect of relatedness on cannibalism within groups of spiders of variable size compared with those of homogenous size. In groups of six spiders, more spiders were cannibalized in nonsib groups than in sib groups under low food conditions. A tendency for nonkin biased cannibalism in starved spider pairs supported that kin recognition in S. lineatus is expressed when food is limited. Size variance of individuals within well‐fed groups of siblings and unrelated spiders had no influence on cannibalism rates. Apparently, both hunger and high density are important promoters of cannibalism. In addition to inclusive fitness benefits, we suggest that an ability to avoid cannibalizing kin will favour the evolution of cooperation and group living in phylogenetically pre‐adapted solitary species.  相似文献   

12.
Tian M  Lewis RV 《Biochemistry》2005,44(22):8006-8012
As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.  相似文献   

13.
Spider sex pheromones: emission, reception, structures, and functions   总被引:1,自引:0,他引:1  
Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid soluble, may be closely related to primary metabolites, and are not necessarily species specific, although they can still assist with species recognition. Newer electrophysiological techniques coupled with chemical analyses assist with the identification of sex pheromone compounds. This provides opportunities for more targeted behavioural experimentation, perhaps with synthetic pheromones, and for theorising about the biosynthesis and evolution of chemical signals generally. Given the intriguing biology of spiders, and the critical role of chemical signals for spiders and many other animal taxa, a deeper understanding of spider sex pheromones should prove productive.  相似文献   

14.
Batesian mimics typically dupe visual predators by resembling noxious or deadly model species. Ants are unpalatable and dangerous to many arthropod taxa, and are popular invertebrate models in mimicry studies. Ant mimicry by spiders, especially jumping spiders, has been studied and researchers have examined whether visual predators can distinguish between the ant model, spider mimic and spider non‐mimics. Tropical habitats harbour a diverse community of ants, their mimics and predators. In one such tripartite mimicry system, we investigated the response of an invertebrate visual predator, the ant‐mimicking praying mantis (Euantissa pulchra), to two related ant‐mimicking spider prey of the genus Myrmarachne, each closely mimicking its model ant species. We found that weaver ants (Oecophylla smaragdina) were much more aggressive than carpenter ants (Camponotus sericeus) towards the mantis. Additionally, mantids exhibited the same aversive response towards ants and their mimics. More importantly, mantids approached carpenter ant‐mimicking spiders significantly more than often that they approached weaver ant‐mimicking spiders. Thus, in this study, we show that an invertebrate predator, the praying mantis, can indeed discriminate between two closely related mimetic prey. The exact mechanism of the discrimination remains to be tested, but it is likely to depend on the level of mimetic accuracy by the spiders and on the aggressiveness of the ant model organism.  相似文献   

15.
The need for molecules with high specificity against noxious insects leads the search towards spider venoms that have evolved highly selective toxins for insect preys. In this respect, spiders as a highly diversified group of almost exclusive insect predators appear to possess infinite potential for the discovery of novel insect‐selective toxins. In 2003, a group of toxins was isolated from the spider Macrothele gigas and the amino acid sequence was reported. We obtained, by molecular biology techniques in a heterologous system, one of these toxins. Purification process was optimized by chromatographic methods to determine the three‐dimensional structure by nuclear magnetic resonance in solution, and, finally, their biological activity was tested. rMagi3 resulted to be a specific insect toxin with no effect on mice.  相似文献   

16.
Social spiders accept immigrant spiders into their kin-based groups, suggesting that spiders cannot recognise kin and may lose inclusive fitness benefits. A field and two laboratory experiments on Diaea ergandros, a social crab spider, demonstrated that younger and older instar D. ergandros do discriminate siblings, but potential benefits were variable and not equally distributed. First, proportional survival was greater in large groups regardless of the within-group relatedness, so accepting immigrants increases probability of group survival (although relatedness was more important among smaller groups). Second, juvenile D. ergandros ate unrelated spiders instead of siblings when starved, so immigrants might represent a food reserve in times of food shortage. Third, subadult resident, sibling females cannibalised unrelated, immigrant females and their brothers instead of immigrant males when starved, suggesting that subadult female spiders may maximise outbreeding opportunities. These benefits provide selective pressure for groups to accept immigrants, but as benefits are realised differentially, conflict and cooperation will exist within spider groups similar to that shown in other group-living taxa.  相似文献   

17.
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods.  相似文献   

18.
Asymmetries are a pervading phenomenon in otherwise bilaterally symmetric organisms and recent studies have highlighted their potential impact on our understanding of fundamental evolutionary processes like the evolution of development and the selection for morphological novelties caused by behavioural changes. One character system that is particularly promising in this respect is animal genitalia because (1) asymmetries in genitalia have evolved many times convergently, and (2) the taxonomic literature provides a tremendous amount of comparative data on these organs. This review is an attempt to focus attention on this promising but neglected topic by summarizing what we know about insect genital asymmetries, and by contrasting this with the situation in spiders, a group in which genital asymmetries are rare. In spiders, only four independent origins of genital asymmetry are known, two in Theridiidae (Tidarren/Echinotheridion, Asygyna) and two in Pholcidae (Metagonia, Kaliana). In insects, on the other hand, genital asymmetry is a widespread and common phenomenon. In some insect orders or superorders, genital asymmetry is in the groundplan (e.g. Dictyoptera, Embiidina, Phasmatodea), in others it has evolved multiple times convergently (e.g. Coleoptera, Diptera, Heteroptera, Lepidoptera). Surprisingly, the huge but widely scattered information has not been reviewed for over 70 years. We combine data from studies on taxonomy, mating behaviour, genital mechanics, and phylogeny, to explain why genital asymmetry is so common in insects but so rare in spiders. We identify further fundamental differences between spider and insect genital asymmetries: (1) in most spiders, the direction of asymmetry is random, in most insects it is fixed; (2) in most spiders, asymmetry evolved first (or only) in the female while in insects genital asymmetry is overwhelmingly limited to the male. We thus propose that sexual selection has played a crucial role in the evolution of insect genital asymmetry, via a route that is accessible to insects but not to spiders. The centerpiece in this insect route to asymmetry is changes in mating position. Available evidence strongly suggests that the plesiomorphic neopteran mating position is a female-above position. Changes to male-dominated positions have occurred frequently, and some of the resulting positions require abdominal twisting, flexing, and asymmetric contact between male and female genitalia. Insects with their median unpaired sperm transfer organ may adopt a one-sided asymmetric position and still transfer the whole amount of sperm. Spiders with their paired sperm transfer organs can only mate in symmetrical or alternating two-sided positions without foregoing transfer of half of their sperm. We propose several hypotheses regarding the evolution of genital asymmetry. One explains morphological asymmetry as a mechanical compensation for evolutionary and behavioural changes of mating position. The morphological asymmetry per se is not advantageous, but rather the newly adopted mating position is. The second hypothesis predicts a split of functions between right and left sides. In contrast to the previous hypothesis, morphological asymmetry per se is advantageous. A third hypothesis evokes internal space constraints that favour asymmetric placement and morphology of internal organs and may secondarily affect the genitalia. Further hypotheses appear supported by a few exceptional cases only.  相似文献   

19.
The diel periodicity of vertical migrations of herbage-dwelling spiders has been studied in natural habitats of clay semidesert of the northern Caspain (Transvolga) region. Steppe habitats (microdepressions) and desert habitats (microelevations) are shown to have much in common: the abundance and the family composition of spider populations of both biotopes are similar; they slightly differ only during the hot summer season. The amplitude of diel fluctuations in spider abundance is relatively great, which is typical of open cenoses under semiarid conditions. In spring and autumn, the peaks of spider abundance in both types of habitats are at night, when air temperature is minimal. In summer, in addition to the nighttime abundance peaks, there are daytime peaks of similar size, due mostly to the increased activity of “southern” taxa, the Thomisidae in desert associations and the Thomisidae + Salticidae in steppe associations. The diel periodicity of vertical migrations in hortobiontic spiders is a complicated phenomenon determined by a number of factors. It is to some extent conditioned by environmental parameters and by vertical migrations of their potential prey, phytophagous insects. Thus, the ecological niches in spiders of different taxa are separated in time according to their morphological and behavioral adaptation to climatic conditions. This separation probably alleviates competition between populations of different taxa.  相似文献   

20.
Once thought to be energetically cheap and easy to produce, empirical work has shown that sperm is a costly and limited resource for males. In some spider species, there is behavioral evidence that sperm are permanently depleted after a single mating. This extreme degree of mating investment appears to co-occur with other reproductive strategies common to spiders, e.g. genital mutilation and sexual cannibalism. Here we corroborate that sperm depletion in the golden orb-web spider Nephila clavipes is permanent by uncovering its mechanistic basis using light and electron microscopy. In addition, we use a phylogeny-based statistical analysis to test the evolutionary relationships between permanent sperm depletion (PSD) and other reproductive strategies in spiders. Male testes do not produce sperm during adulthood, which is unusual in spiders. Instead, spermatogenesis is nearly synchronous and ends before the maturation molt. Testis size decreases as males approach their maturation molt and reaches its lowest point after sperm is transferred into the male copulatory organs (pedipalps). As a consequence, the amount of sperm available to males for mating is limited to the sperm contained in the pedipalps, and once it is used, males lose their ability to fertilize eggs. Our data suggest that PSD has evolved independently at least three times within web-building spiders and is significantly correlated with the evolution of other mating strategies that limit males to monogamy, including genital mutilation and sexual cannibalism. We conclude that PSD may be an energy-saving adaptation in species where males are limited to monogamy. This could be particularly important in web-building spiders where extreme sexual size dimorphism results in large, sedentary females and small, searching males who rarely feed as adults and are vulnerable to starvation. Future work will explore possible energetic benefits and the evolutionary lability of PSD relative to other mate-limiting reproductive behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号