首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One molecule of glucose 6-phosphate inhibits brain hexokinase (HKI) with high affinity by binding to either one of two sites located in distinct halves of the enzyme. In addition to potent inhibition, glucose 6-phosphate releases HKI from the outer leaflet of mitochondria; however, the site of glucose 6-phosphate association responsible for the release of HKI is unclear. The incorporation of a C-terminal polyhistidine tag on HKI facilitates the rapid purification of recombinant enzyme from Escherichia coli. The tagged construct has N-formyl methionine as its first residue and has mitochondrial association properties comparable with native brain hexokinases. Release of wild-type and mutant hexokinases from mitochondria by glucose 6-phosphate follow equilibrium models, which explain the release phenomenon as the repartitioning of ligand-bound HKI between solution and the membrane. Mutations that block the binding of glucose 6-phosphate to the C-terminal half of HKI have little or no effect on the glucose 6-phosphate release. In contrast, mutations that block glucose 6-phosphate binding to the N-terminal half require approximately 7-fold higher concentrations of glucose 6-phosphate for the release of HKI. Results here implicate a primary role for the glucose 6-phosphate binding site at the N-terminal half of HKI in the release mechanism.  相似文献   

2.
A pH-dependent, saturable binding of hexokinase isozyme I from Ehrlich ascites carcinoma to plasma membrane and microsome preparations from the same tissue is demonstrated. This binding is enhanced by glucose 6-phosphate and may be considered as the sum of a glucose 6-phosphate-dependent binding and an independent binding. The half saturation concentration of hexokinase is about 0.4 unit per ml for both types of binding, and a maximal binding of 0.5-2.0 units per mg membrane protein is observed for both, although the pH optimum of the independent binding (5.4) is lower than that of the dependent binding (5.9). The half saturation concentration of glucose 6-phosphate required for the dependent binding is 0.05 mM at pH 6.1. 2-Deoxyglucose 6-phosphate competatively reverses the effect of glucose 6-phosphate on binding but does not diminish its inhibition of hexokinase activity.  相似文献   

3.
W J Ray  J W Burgner  C B Post 《Biochemistry》1990,29(11):2770-2778
Near ultraviolet spectral studies were conducted on two inhibitor complexes obtained by treating the dephospho form of the phosphoglucomutase.Mg2+ complex with inorganic vanadate in the presence of either glucose 1-phosphate [cf. Percival, M. D., Doherty, K., & Gresser, M. J. (1990) Biochemistry (first of four papers in this issue)] or glucose 6-phosphate. Part of the spectral differences between the two inhibitor complexes arises because the glucose phosphate moiety in the complex derived from glucose 1-phosphate binds to the enzyme in a different way from the glucose phosphate moiety in the complex derived from glucose 6-phosphate and because these alternative binding modes produce different environmental effects on the aromatic chromophores of the dephospho enzyme. These spectral differences are strikingly similar to those induced by the binding of glucose 1-phosphate and glucose 6-phosphate to the phospho enzyme--which shows that the glucose 1-phosphate and glucose 6-phosphate moieties occupy positions in the inhibitor complexes closely related to those that they occupy in their respective catalytically competent complexes. This binding congruity indicates that in the inhibitor complexes the oxyvanadium grouping is bound at the site where (PO3-) transfer normally occurs. 31P NMR studies of the phosphate group in these complexes also provide support for this binding pattern. A number of other systems based on compounds with altered structures, such as the deoxysugar phosphates, or systems with different compositions, as in the case of the metal-free enzyme or of the glucose phosphates plus nitrate, also were examined for evidence that complexes analogous to the inhibitor complexes were formed, but none was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.  相似文献   

5.
The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed.  相似文献   

6.
The role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides has been investigated by a structural and functional characterization of the D177N mutant enzyme. Its three-dimensional structure has been determined by X-ray cryocrystallography in the presence of NAD(+) and in the presence of glucose 6-phosphate plus NADPH. The structure of a glucose 6-phosphate complex of a mutant (Q365C) with normal enzyme activity has also been determined and substrate binding compared. To understand the effect of Asp-177 on the ionization properties of the catalytic base His-240, the pH dependence of kinetic parameters has been determined for the D177N mutant and compared to that of the wild-type enzyme. The structures give details of glucose 6-phosphate binding and show that replacement of the Asp-177 of the catalytic dyad with asparagine does not affect the overall structure of glucose 6-phosphate dehydrogenase. Additionally, the evidence suggests that the productive tautomer of His-240 in the D177N mutant enzyme is stabilized by a hydrogen bond with Asn-177; hence, the mutation does not affect tautomer stabilization. We conclude, therefore, that the absence of a negatively charged aspartate at 177 accounts for the decrease in catalytic activity at pH 7.8. Structural analysis suggests that the pH dependence of the kinetic parameters of D177N glucose 6-phosphate dehydrogenase results from an ionized water molecule replacing the missing negative charge of the mutated Asp-177 at high pH. Glucose 6-phosphate binding orders and orients His-178 in the D177N-glucose 6-phosphate-NADPH ternary complex and appears to be necessary to form this water-binding site.  相似文献   

7.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   

8.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

9.
The binding of phosphoenolpyruvate, malate, and glucose 6-phosphate to phosphoenolpyruvate carboxylase purified from Crassula argentea Thunb. was measured using both the intrinsic tryptophan fluorescence of the enzyme and the extrinsic fluorescence of the complex of 8-anilino-1-napthalenesulfonate with the enzyme. It was found that the substrate phosphoenolpyruvate can bind in the absence of magnesium but is bound in greater quantities and more tightly when magnesium is present. Malate reduces the binding of phosphoenolpyruvate, while glucose 6-phosphate increases the binding of the substrate. Glucose 6-phosphate requires magnesium to bind to the enzyme, while malate does not. The general trends from the binding experiments using fluorescence methods were confirmed by activity determinations using assays performed in the absence of magnesium.  相似文献   

10.
Enzyme-substrate complexes of phosphomannomutase/phosphoglucomutase (PMM/PGM) reveal the structural basis of the enzyme's ability to use four different substrates in catalysis. High-resolution structures with glucose 1-phosphate, glucose 6-phosphate, mannose 1-phosphate, and mannose 6-phosphate show that the position of the phosphate group of each substrate is held constant by a conserved network of hydrogen bonds. This produces two distinct, and mutually exclusive, binding orientations for the sugar rings of the 1-phospho and 6-phospho sugars. Specific binding of both orientations is accomplished by key contacts with the O3 and O4 hydroxyls of the sugar, which must occupy equatorial positions. Dual recognition of glucose and mannose phosphosugars uses a combination of specific protein contacts and nonspecific solvent contacts. The ability of PMM/PGM to accommodate these four diverse substrates in a single active site is consistent with its highly reversible phosphoryl transfer reaction and allows it to function in multiple biosynthetic pathways in P. aeruginosa.  相似文献   

11.
Polyamines stimulate the binding of hexokinase type II to mitochondria   总被引:1,自引:0,他引:1  
Spermine and spermidine enhanced the binding of hexokinase isoenzyme type II to mitochondria, both of which were prepared from Ehrlich-Lettre hyperdiploid ascites tumor cells, at much lower concentrations than Mg2+. Chymotrypsin-treated hexokinase II could not bind to the mitochondrial membrane in the presence of either spermine or Mg2+, indicating that the effect of spermine is not a nonspecific action, since the treatment of chymotrypsin cleaves only the region essential for the binding without any significant effect of the catalytic activity. Both spermine and Mg2+ antagonized the glucose 6-phosphate-induced release of mitochondria-bound hexokinase, and promoted the binding of the solubilized hexokinase II even in the presence of glucose 6-phosphate. However, inhibition of the activity of soluble hexokinase by glucose 6-phosphate was not reversed by spermine and Mg2+. Hexokinase II rebound to mitochondria with spermine and Mg2+ produced glucose 6-phosphate using ATP generated inside the mitochondria, and no difference was observed between the spermine- and Mg2+-rebound systems. Significance of the binding of hexokinase to mitochondria, especially with polyamines, is discussed with reference to high glycolytic rate in tumor cells.  相似文献   

12.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

13.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibits glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides competitively with respect to glucose 6-phosphate and noncompetitively with respect to NAD+ or NADP+, with Ki = 40 microM in the NADP-linked and 34 microM in the NAD-linked reaction. Incubation of glucose-6-phosphate dehydrogenase with [3H]PLP-AMP followed by borohydride reduction shows that incorporation of 0.85 mol of PLP-AMP per mol of enzyme subunit is required for complete inactivation. Both glucose 6-phosphate and NAD+ protect against this covalent modification. The proteolysis of the modified enzyme and isolation and sequencing of the labeled peptides revealed that Lys-21 and Lys-343 are the sites of PLP-AMP interaction and that glucose 6-phosphate and NAD+ protect both lysyl residues against modification. Pyridoxal 5'-phosphate (PLP) also modifies Lys-21 and probably Lys-343. Lys-21 is part of a highly conserved region that is present in all glucose-6-phosphate dehydrogenases that have been sequenced. Lys-343 corresponds to an arginyl residue in other glucose-6-phosphate dehydrogenases and is in a region that is less homologous with those enzymes. PLP-AMP and PLP are believed to interact with L. mesenteroides glucose-6-phosphate dehydrogenase at the glucose 6-phosphate binding site. Simultaneous binding of NAD+ induces conformational changes (Kurlandsky, S. B., Hilburger, A. C., and Levy, H. R. (1988) Arch. Biochem. Biophys. 264, 93-102) that are postulated to interfere with Schiff's-base formation with PLP or PLP-AMP. One or both of the lysyl residues covalently modified by PLP or PLP-AMP may be located in regions of the enzyme undergoing the NAD(+)-induced conformational changes.  相似文献   

14.
Glucose 6-phosphate dehydrogenase from sweet potato   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase was purified about 290-foldfrom sweet potato root tissue. The molecular weight was estimatedto be 110,000 by Bio-Gel 300 column chromatography. A LINEWEAVER-BURKplot of the reciprocal rate against reciprocal glucose 6-phosphateconcentration was concave downwards. A HILL coefficient lessthan 1 was obtained at lower concentrations of glucose 6-phosphate(below 0.5 mM). These results suggest that binding of glucose6-phosphate to the enzyme occurs with negative cooperativity. (Received April 30, 1970; )  相似文献   

15.
Initial rate, product inhibition, and alternate substrate studies of purified glucose 6-phosphate dehydrogenase of human blood platelets give results consistent with an Ordered BiBi reaction mechanism. NADP appears to be the first substrate to bind and NADPH the last product to be released. ADP and ATP inhibitions are both competitive with respect to glucose 6-phosphate. ADP inhibition is noncompetitive with respect to NADP. ATP inhibition with respect to NADP is complex and is interpreted to indicate that there are two ATP binding sites on the enzyme, one for which NADP can compete and one for which glucose 6-phosphate can compete.  相似文献   

16.
1. The deoxyfluoro-d-glucopyranose 6-phosphates were prepared from the corresponding deoxyfluoro-d-glucoses and ATP by using hexokinase. 2. 3-Deoxy-3-fluoro- and 4-deoxy-4-fluoro-d-glucose 6-phosphate were substrates for glucose phosphate isomerase, and in addition the products of this reaction, 3-deoxy-3-fluoro- and 4-deoxy-4-fluoro-d-fructose 6-phosphate respectively, were good substrates for phosphofructokinase. 3. Some C-2-substituted derivatives of d-glucose 6-phosphate were found to be competitive inhibitors of glucose phosphate isomerase. 4. The possible role of the hydroxyl groups in the binding of d-glucose 6-phopshate to glucose phosphate isomerase is discussed.  相似文献   

17.
18.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

19.
The binding of substrates and modifiers to glucosamine synthetase   总被引:2,自引:0,他引:2  
1. The binding of substrates and effectors to glucosamine synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was studied by using the ligand to alter the denaturation rate of the enzyme. The free enzyme bound fructose 6-phosphate, glucose 6-phosphate and UDP-N-acetylglucosamine, but not glutamine, AMP or UTP. Glucose 6-phosphate and AMP increased the binding of UDP-N-acetylglucosamine whereas UTP decreased the interaction between the enzyme and the feedback inhibitor. UDP-N-acetylglucosamine induced a glutamine-binding site on the enzyme. 2. Selective thermal or chemical denaturation revealed that the UDP-N-acetylglucosamine-binding site was not located at the catalytic site. The UTP site could not be distinguished from that for the nucleotide sugar. The AMP- and glucose 6-phosphate-binding sites were distinct from the catalytic and feedback-inhibitor-binding sites. 3. The specificity of the glutamine-binding site was investigated by using a series of potential analogues. 4. A model is proposed for the action of the effectors and the mechanism of the reaction discussed in kinetic and chemical terms.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase was found to bind in vitro to purified, human erythrocyte glucose transporter reconstituted into vesicles. Mild tryptic digestion of the glucose transporter totally inactivated the binding, suggesting that the cytoplasmic domain of the transporter is involved in the binding to glyceraldehyde-3-phosphate dehydrogenase. The binding was abolished in the presence of antisera raised against the purified glucose transporter, further supporting specificity of this interaction. The binding was reversible with a dissociation constant (Kd) of 3.3 x 10(-6) M and a total capacity (Bt) of approximately 30 nmol/mg of protein indicating a stoichiometry of one enzyme-tetramer per accessible transporter. The binding was sensitive to changes in pH showing an optimum at around pH 7.0. KCl and NaCl inhibited the binding in a simple dose-dependent manner with Ki of 40 and 20 mM, respectively. The binding was also inhibited by NAD+ with an estimated Ki of 3 mM. ATP, on the other hand, enhanced the binding by up to 3-fold in a dose-dependent manner with an apparent Ka of approximately 6 mM. The binding was not affected by D-glucose or cytochalasin B. The binding did not affect either the glucose or cytochalasin B in binding affinities or the transport activity of the transporter. However, the enzyme was inactivated totally upon binding to the transporter. Based on these findings, we suggest that a significant portion of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes exists as an inactive form via an ATP-dependent, reversible association with glucose transporter, and that this association may exert regulatory intervention on nucleotide metabolism in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号