首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve hydrocarbons which singly support no growth or little growth of Cladosporium resinae were examined for their effects on utilization of four substrates which do support growth of the fungus. Of the 48 combinations of an oxidizable substrate with a potential hydrocarbon substrate, 8 combinations supported increased oxygen consumption above the level obtained with the oxidizable substrate alone. There was no evidence of co-oxidation of the potential co-substrates toluene or p -xylene; their effects on increasing O2-uptake appear to be due to permeability changes. With hexadecane alone, the ratio hexadecane oxidized to CO2: hexadecane taken up by cells was 97:3. Addition of p -xylene or toluene decreased that ratio slightly to 96:4 and 89:11, respectively. These high ratios of hydrocarbon oxidized to hydrocarbon taken up may be advantageous during degradation of petroleum in the natural environment, since petroleum components could be degraded without formation of a large biomass.  相似文献   

2.
Effects of n-alkanes on Cladosporium resinae   总被引:3,自引:0,他引:3  
  相似文献   

3.
Utilization of hydrocarbons by Cladosporium resinae   总被引:4,自引:0,他引:4  
  相似文献   

4.
Utilization of n-Alkanes by Cladosporium resinae   总被引:2,自引:1,他引:2       下载免费PDF全文
Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C(14) to C(18)) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown.  相似文献   

5.
Summary Cladosporium resinae produces extracellular biosurfactants when growing in a hydrocarbon source such as the jet fuel JP8. This production of biosurfactants was observed by the reduction of the surface tension of the aqueous phase of growing medium, and by the increase in emulsion and foaming properties. A partial purification by collapsed foam gave better physical properties by decreasing surface tension and increasing foaming power and stabilization of emulsions. Surface active substances were purified by reversed phase chromatography. Six compounds representing over 75% of fraction containing surface activity were present. This fraction gave an improvement of all surface properties.  相似文献   

6.
Pathway of n-Alkane Oxidation in Cladosporium resinae   总被引:2,自引:0,他引:2       下载免费PDF全文
Pathways of initial oxidation of n-alkanes were examined in two strains of Cladosporium resinae. Cells grow on dodecane and hexadecane and their primary alcohol and monoic acid derivatives. The homologous aldehydes do not support growth but are oxidized by intact cells and by cell-free preparations. Hexane and its derivatives support little or no growth, but cell extracts oxidize hexane, hexanol, and hexanal. Alkane oxidation by extracts is stimulated by reduced nicotinamide adenine dinucleotide (phosphate). Alcohol and aldehyde oxidation are stimulated by nicotinamide adenine dinucleotide (phosphate), and reduced coenzymes accumulate in the presence of cyanide or azide. Extracts supplied with (14)C-hexadecane convert it to the alcohol, aldehyde, and acid. Therefore, the major pathway for initial oxidation of n-alkanes is via the primary alcohol, aldehyde, and monoic acid, and the system can act on short-, intermediate-, and long-chain substrates. Thus, filamentous fungi appear to oxidize n-alkanes by pathways similar to those used by bacteria and yeasts.  相似文献   

7.
Culture filtrates of Cladosporium resinae ATCC 20495 contain a mixture of enzymes able to convert starch and pullulan efficiently into D-glucose. Culture conditions for optimal production of the pullulan-degrading activity have been established. The amylolytic enzyme preparation was fractionated by ion-exchange and molecular-sieve chromatography, and shown to contain alpha-D-glucosidase, alpha-amylase, and two glucoamylases. The glucoamylases have been purified to homogeneity and their substrate specificities investigated. One of the glucoamylases (termed P) readily hydrolyses the (1 leads to 6)-alpha-D linkages in pullulan, amylopectin, isomaltose, panose, and 6(3)-alpha-D-glucosylmaltotriose. Each of the glucoamylases cleaves the (1 leads to 6)-alpha-D linkage in panose much more readily than that in isomaltose.  相似文献   

8.
With (14)C-tagged 8-azaguanine and guanine in a Bushnell-Haas medium with glucose as a carbon source, the rate of incorporation of the two bases was determined in Cladosporium resinae. There was a marked preference for the incorporation of 8-azaguanine over guanine.  相似文献   

9.
10.
Abstract One of the structural changes which occur in Cladosporium resinae during growth on hydrocarbons is the formation of electron-dense bodies. In this paper we report the results of X-ray microanalysis and X-ray mapping, which have shown that these bodies are associated with high concentrations of calcium and phosphorus. Such accumulation of these elements is probably a reflection of the low growth rates which appear to be characteristic of growth of C. resinae on hydrocarbons.  相似文献   

11.
Two phaeoid strains of the fungus Cladosporium carrionii (SR3 from a xerophyte species and PP8201 from a patient), and one strain of Hormoconis resinae (Cladosporium resinae), isolated from oil-impregnated soil, were analyzed for their cell wall composition by colorimetric methods, X-ray diffraction, infrared spectroscopy, and solid-state 13C-nuclear magnetic resonance. Results suggested that the cell walls were composed mainly of hexoses (34%–47%) as β-1,3-glucan (some galactose and mannose were also present) and melanin, chitin being absent. Electron microscopic observations suggested that melanin was found not only in the cell wall but also in intracellular bodies resembling melanosomes.  相似文献   

12.
Long-chain saturated fatty acids (C(13) to C(18)) and fatty alcohols (C(12) to C(18)) were well utilized by three different soil isolates of Cladosporium resinae as the sole carbon and energy sources in static liquid cultures. Shorter-chain compounds, down to C(5), did not support growth and were in fact toxic towards the fungus growing on glucose. Rapid and considerable potassium efflux, protein leakage, and inhibition of endogenous respiration were observed in the presence of the shorter fatty acids and alcohols. Possible mechanisms and significance of the toxicity are discussed.  相似文献   

13.
14.
15.
Subterminal Oxidation of Aliphatic Hydrocarbons   总被引:2,自引:3,他引:2       下载免费PDF全文
Evidence is presented for a catabolic pathway of n-alkane oxidation which proceeds via subterminal oxidation rather than methyl group oxidation.  相似文献   

16.
More than 70% of n-hexadecane-grown cells of Cladosporium resinae ATCC 22711 were converted to spheroplasts when they were treated with chitinase and lytic enzyme from Trichoderma harziamum. The light mitochondrial fraction, containing microbodies, mitochondria and vacuoles, was isolated from spheroplasts. Vacuoles in cells were demonstrated by the inability of acridine orange to stain organelles previously treated with 2.5 μM Bafilomycin A1, a vacuolar ATPase inhibitor. Microbodies, mitochondria and vacuoles were separated from the light mitochondrial fraction by self-generated density-gradient ultracentrifugation using iodixanol as gradient medium. NADH-dependent n-alkane monooxygenase activity and fatty alcohol oxidase activity were located in the cytoplasm and mitochondrial fractions respectively. Received: 21 September 1998 / Received revision: 21 January 1999 / Accepted: 31 January 1999  相似文献   

17.
Abstract: l -Glutamate stimulates the liberation of arachidonic acid from mouse striatal neurons via the activation of N -methyl- d -aspartic acid (NMDA) receptors and by the joint stimulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and metabotropic receptors. In this study, we investigated whether starving cultured mouse striatal neurons of glucose would modify glutamatergic receptor-mediated arachidonic acid release. Glucose deprivation for 30 min led to enhancement of the NMDA-evoked release of arachidonic acid, compared with that observed in the presence of glucose. This enhanced response depended on both the concentration of glucose and the length of time of glucose deprivation. The enhanced NMDA response appeared to result from both a release of glutamate and the subsequent additional release of arachidonic acid due to the activation of AMPA and metabotropic receptors. Indeed, the increased NMDA response was completely reversed when extracellular glutamate was enzymatically removed. Moreover, glucose deprivation potentiated the combined AMPA/metabotropic receptor-evoked release of arachidonic acid, even in the absence of extracellular glutamate. However, removing glucose did not improve the calcium rise induced by AMPA or NMDA. The ATP-evoked release of arachidonic acid from striatal astrocytes was not altered by glucose starvation. In summary, glucose deprivation affected two properties of striatal neurons: (a) it induced an NMDA-evoked release of glutamate from striatal neurons and (b) it selectively potentiated the AMPA/(1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid-evoked release of [3H]arachidonic acid without altering the authentic NMDA-mediated response.  相似文献   

18.
When Cladosporium resinae is provided with n-hexadecane and glucose, n-hexadecane is used preferentially. Studies using [14C]glucose indicated that n-hexadecane did not inhibit glucose uptake but did retard oxidation of glucose to CO2 and assimilation of glucose carbon into trichloroacetic acid-insoluble material. Glucose could be recovered quantitatively from hydrocarbon-grown cells that had been transferred to glucose. Four enzymes that may be involved in glucose metabolism, hexokinase, glucose-6-phosphate dehydrogenase, glucose-phosphate isomerase, and succinate dehydrogenase, were not detected in cells grown on hexadecane but were present in cells grown on glucose. Addition of hexadecane to extracts of glucose-grown cells resulted in immediate loss of activity for each of the four enzymes, but two other enzymes did not directly involved in glucose metabolism, adenosine triphosphatase and alanine-ketoacid aminotransferase, were not inhibited by hexadecane in vitro. Cells grown on hexadecane and transferred to glucose metabolize intracellular hexadecane; after 1 day, activity of hexokinase, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, and succinate dehydrogenase could be detected and 22% of the intracellular hydrocarbon had been metabolized. Hexadecane-grown cells transferred to glucose plus cycloheximide showed the same level of activity of all the four enzymes as cells transferred to glucose alone. Thus, intracellular n-hexadecane or a metabolite of hexadecane can inthesis of those enzymes is not inhibited.  相似文献   

19.
Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms—GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during excitotoxicity and the first molecular target of the UPS affected in this cell death process.  相似文献   

20.
Accumulation of vitamin B6 by the fungus Cladosporium resinae str. Moscow University eas investigated on media containing n-dodecane or glucose. Vitamin B6 was built up in the mycelium and the culture liquid filtrate. Under stationary condiditions of growth the maximum amount was found on the 28th day and reached 750/mkg and 925/mkg per 1 of the culture liquid on the glucose and n-dodecane containing medium, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号