首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recombinant plasmid, pArab8, harbouring the cDNA encoding the mature form of the tetrapyrrole synthesis enzyme porphobilinogen deaminase (EC 4.3.1.8; also known as hydroxymethylbilane synthase) from Arabidopsis thaliana (L.) Heynh. has been constructed, and used to transform Escherichia coli. The porphobilinogen deaminase protein from Arabidopsis was overexpressed in this strain, and purified to homogeneity (3000-fold) with a yield of 20%. Antibodies were raised against the purified plant enzyme, and used in Western blot analysis, immunoprecipitation of enzyme activity and immuno-gold electron microscopy. The results indicate that the enzyme is confined to plastids in both leaves and roots. The implications of this finding for plant tetrapyrrole synthesis are discussed.Abbreviations DEAE diethylaminoethyl - FPLC fast protein liquid chromatography - PBG porphobilinogen This work was supported by Science and Engineering Research Council (SERC) and Agricultural and Food Research Council (AFRC) grants to P.M.J. and an AFRC grant to A.G.S. The protein sequencing was carried out by Mr Lawrence Hunt of the SERC MRI Protein Sequencing Unit (Director Dr M.G. Gore) at Southampton University. We acknowledge the Wellcome Foundation for financial support of the Protein and Nucleic Acid Chemistry Facility at the University of Cambridge, where the oligonucleotide primers were synthesised.  相似文献   

2.
Metabolites of hydrocortisone were isolated from rat liver on a preparative scale, fractionated by column chromatography on Sephadex LH-20 and silica gel and tested for biological activity. Apart from the well known neutral metabolites, steroid glucuronides and sulfates, we obtained metabolite fractions containing non-conjugated steroidal carboxy acids and acid metabolites of unknown structure. One of these fractions induced tyrosine aminotransferase (EC 2.6.1.5) in adrenalectomized female rats but not trptophan oxygenase (EC 1.13.11.11), whereas another one mainly increased activity of tryptophan oxygenase. The doses necessary to significantly induce both enzymes were much lower in case of these metabolites than in the case of hydrocortisone itself. The active fractions eluting from silica gel column were analyzed by thin-layer chromatography in two different solvent systems. Absence of hydrocortisone in these fractions could be clearly demonstrated. Furthermore, the active fractions eluting from the silica gel column were characterized by treatment with an extract from Helix pomatia and/or diazomethane and subsequent analysis by thin-layer chromatography. We conclude, considering the biological activity of some synthesized derivatives of hydrocortisone, that the biologically active components are acid metabolites of hydrocortison which are not identical to any of the known metabolites.  相似文献   

3.
Porphobilinogen deaminase, the enzyme condensing four molecules of porphobilinogen, was isolated and purified from light grown Scenedesmus obliquus (wild type). The purification procedure included heat treatment, ammonium sulphate fractionation, gel filtration, high-resolution anion-exchange chromatography and hydrophobic interaction chromatography. The enzyme was purified 1368-fold, compared to the initial crude extract. Its final specific activity was 6812 units · (mg · protein)?1 at pH 7.4 with a recovery of 44%. The relative molecular mass was 33000, as determined by Sephadex G-100 gel filtration, and 35900 by lithium dodecyl sulfate-polyacrylamide-gel electrophoresis, indicating that the enzyme is a monomer. Studies of initial reaction velocities showed a linear progress curve for hydroxymethylbilane formation and a hyperbolic dependence of the initial reaction rate on substrate concentration, consistent with a sequential displacement mechanism. Apparent kinetic constants (K m and V max) for the conversion of porphobilinogen to hydroxymethylbilane at 37 ° C, pH 7.4, were 79 μM and 176 pmol · min?1, respectively. Variation of both V max and K max with pH indicated the presence of ionizable groups in the enzyme-substrate complex(es), showing a single ionization (pK 7.15) in V max/K m plots. A sharp pH-profile for V max was interpreted as a positive cooperative proton dissociation. In spite of the two pathways existing for 5-aminolevulinate biosynthesis in Scenedesmus, currently there is no indication of the existence of two porphobilinogen deaminases or even of isoenzymes.  相似文献   

4.
Summary To study the effect of haemodynamic stress on the morphological differentiation of pseudointima, the ultrastructure of the cells lining normally shaped and aneurysmal polyurethane vascular prostheses implanted into the abdominal aorta of rats was examined. In the normally shaped vascular prostheses the pseudointima was composed of several layers of smooth muscle cells, which varied in differentiation from normal smooth muscle cells to myofibroblasts, and which were lined by a continuous sheet of endothelial cells. In the aneurysmal vascular prostheses, a pseudointima, composed of only layers of smooth muscle cells had developed. Those smooth muscle cells which lined the lumen had a typical morphology: they were polygonal, flat cells of unequal size, with a distinct organelle-free zone, containing myofilaments, at the luminal peripheral cytoplasmic side. The other smooth muscle cells varied in differentiation from normal smooth muscle cells to myofibroblasts. Under severe haemodynamic stresses, such as occur in the aneurysmal vascular prostheses, the regeneration of endothelial cells is impaired and smooth muscle cells undergo morphological changes to form a pseudoendothelial lining.  相似文献   

5.
Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria.  相似文献   

6.
It has been suggested that diabetes induces an increase in oxidative stress; the increased expression of heme-oxygenase 1 (HO-1) in liver is believed to be a sensitive marker of the stress response. The aim of this study was to examine whether diabetes is able to induce HO-1 expression in liver. The specific mRNA was amplified by RT/PCR and calibrated with amplified β-actin mRNA.

The mRNA HO-1 levels in the liver of spontaneously diabetic rats were increased by 1.8 fold compared with non diabetics; this supports the hypothesis of weak but significant oxidative damage due to chronic hyperglycaemia. This work represents the first in vivo study exploring the semi-quantitative expression of HO-1 in the liver of spontaneously diabetic rats.  相似文献   

7.
The deamination of AMP by AMP aminohydrolase (EC 3.5.4.6) serves as the major source of ammonia production in skeletal muscle. It has been suggested that the ammonia may serve either in a buffering capacity to combat acidosis due to the accumulation of lactic acid produced during prolonged muscular activity, or as a substrate for glutamine formation which can ultimately be utilized by the kidney in adapting to metabolic acidosis. In view of this proposal, the properties of the enzyme obtained from skeletal muscle of acidotic rats have been compared with the enzyme from normal muscle. The specific activity of AMP deaminase in crude homogenates of acidotic muscle was not significantly different from normal levels. The enzyme from acidotic muscle was purified to homogeneity and was found to be identical to the enzyme obtained from normal muscle by the criteria of electrophoretic mobility, pH optimum, molecular weight, sedimentation coefficient, subunit composition, amino acid composition, monovalent cation requirement, substrate saturation, and inhibition by ATP, Pi and creatine-P. Thus, if the enzyme functions to prevent acidosis, the ability to respond to changes in the intracellular environment which accompany acidosis must be built into the structure of the enzyme normally found in skeletal muscle. Three lines of evidence strongly support this viewpoint: (a) the rate of deamination is approximately 2-fold higher at pH 6.5 than at pH 7.0, (b) the activity increases linearly with a decrease in the adenylate energy charge, and (c) within the normal physiological range of the adenylate energy charge, the enzyme is operating at only 10–20% of its maximum capacity.  相似文献   

8.
Porphobilinogen deaminase (PBGD), the third enzyme in the biosynthesis of heme, is deficient in acute intermittent porphyria (AIP). AIP is a genetic disease characterized by neurovisceral and psychiatric disturbances. Despite a palliative treatment, it may still be lethal. An initial step towards gene therapy was recently taken by showing that PBGD could be expressed to correct the enzyme deficiency in AIP fibroblasts. The aim of the present study was to investigate whether the biochemical defect can be corrected by using non-viral gene delivery. The biochemical defect in human and mouse PBGD deficient fibroblasts was demonstrated by analyzing synthesis of the heme precursor, protoporphyrin (PP), after addition of 5-aminolevulinic acid (ALA). Human AIP fibroblasts synthesized 21% and mouse PBGD deficient fibroblasts only 11% of the PP amount synthesized in respective control cells. Gene delivery increased the PBGD activity 88–200 fold in human AIP fibroblasts and synthesis of PP was increased from 21–152% of normal after ALA incubation. Similar results were obtained in mouse PBGD deficient cells, although the PP levels were several-fold lower as compared to human cells. HPLC analysis confirmed that PP was the main porphyrin intermediate that was formed. Addition of porphobilinogen (PBG) resulted in 3–7 fold lower synthesis of PP as compared to ALA addition. These results show that non-viral gene delivery of plasmids encoding PBGD results in a high expression of functional PBGD shown by induced synthesis of PP in PBGD deficient cells after supplementation of ALA and PBG.  相似文献   

9.
In human, there are four AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) isozymes: E1, E2, M and L. Chromatographic, electrophoretic and immunological studies showed the existence of isozymes E1 and E2 in erythrocytes, isozyme M in muscle and isozyme L in liver and brain. The tissues such as heart, kidney and spleen contained isozymes E1, E2 and L. Isozymes E1, M and L were isolated as apparently homogeneous preparations. The three isozymes were all tetramers composed of identical subunits, but differing slightly in molecular weight; isozyme E1 showed a subunit molecular weight of 80 000, isozyme M 72 000 and isozyme L 68 000. They were immunologically different from one another. The antisera precipitated only the corresponding enzyme and did not precipitate any other isozyme. The three isozymes were also different in kinetic and regulatory properties. Isozyme E2 was very similar to isozyme E1 in immunological and kinetic properties, although isozyme E2 could be separated from isozyme E1 by phosphocellulose chromatography, and zonal electrophoresis.  相似文献   

10.
11.
Partial deficiencies in enzymes activity of the heme biosynthesis pathway have been demonstrated in cultured skin fibroblasts and other tissues from patients suffering from congenital erythropoietic porphyria and hereditary coproporphyria. Using a new fluorimetric method, we have assessed quantitatively porphyrin biosynthesis from added δ-aminolevulinic acid in cultured fibroblasts of two congenital erythropoietic porphyria patients and one homozygous case of hereditary coproporphyria. The results were compared with those of the patients' parents and those of normal controls. All the porphyrins synthesized remained within the cells of normal subjects and of patients with congenital erythropoietic porphyria; these porphyrins were mostly (95%) protoporphyrin. The fibroblasts of the patient with homozygous hereditary coproporphyria synthesized the same amount of porphyrins, but only 25% were found within the cells, whereas 75% were found in the medium. The porphyrins found within the cells were coproporphyrin (25%) and protoporphyrin (75%); in the medium, only coproporphyrin was identified.  相似文献   

12.
Butyric acid (BA) induces jugular blood mitochondrial oxidative stress, whereas heme-induced oxidative stress was previously reported to inhibit SIRT1 in vitro. This would imply that BA-induced oxidative stress may similarly affect SIRT1. Here, we elucidated the BA effects on jugular blood cytosolic oxidative stress and SIRT1. Jugular blood cytosol was collected 0, 60, and 180 min after BA injection into rat gingival tissues and used throughout the study. Blood cytosolic oxidative stress induction, heme accumulation, NADPH oxidase (NOX) activation, nicotinamide adenine dinucleotide (NAD+) and NADP pool levels, NAD kinase (NADK), and SIRT1 amounts were determined. We found that BA retention in the gingival tissue induces blood cytosolic oxidative stress and heme accumulation which we correlated to both NOX activation and NADP pool increase. Moreover, we showed that BA-related NADP pool build-up is associated with NADK increase which we suspect decreased NAD+ levels and consequentially lowered SIRT1 amounts in the rat blood cytosol.  相似文献   

13.
小麦胆色素原脱氨酶的纯化及部分性质研究   总被引:1,自引:0,他引:1  
生物中四吡咯化合物合成的共同途径是由δ-氨基酮戊酸(δ-aminolevulinicacid,ALA)在δ-氨基酮戊酸脱水酶(δ-aminolevulinatedehydratase,ALAD)作用下合成胆色素原(porpho-bilinogen,P...  相似文献   

14.
Heme distribution in subcellular fractions of rat liver was studied first hours under the action of several agents causing oxidative stress in vivo. Total and post-mitochondrial heme content in liver was found to depend on both the level of hemolysis products in blood and agent's capacity to modify heme and hemoproteins. The increase of activity of 5-aminolevulinate synthase (ALAS) and/or heme accumulation in mitochondria was accompanied by increase of tryptophan-2,3-dioxygenase (TDO) heme saturation. Membrane stabilisation by tocopherol or prevention of early ALAS induction by cycloheximide prevented both mitochondrial heme accumulation and increase of TDO heme saturation. Modification of heme fully prevented the alterations of total heme content even under severe hemolysis as well as the increase of TDO heme saturation if no increase of heme synthesis occurred. Thus heme synthesis can greatly contribute to heme intracellular redistribution under oxidative stress.  相似文献   

15.
Many selenoorganic compounds play an important role in biochemical processes and act as antioxidants, enzyme inhibitors, or drugs. The effects of five new synthesized selenoorganic compounds (2-(5-chloro-2-pyridyl)-7-azabenzisoselenazol-3(2H)-one; 2-phenyl-7-azabenzisoselenazol-3(2H)-one; 2-(pyridyl)-7-azabenzisoselenazol-3(2H)-one; 7-azabenzisoselenazol-3(2H)-one; bis(2-aminophenyl) diselenide) on oxidative changes in human blood platelets and in plasma were studied in vitro and compared with those of ebselen, a well known antioxidant. Our studies demonstrated that bis(2-aminophenyl) diselenide has distinctly protective effects against oxidative stress in blood platelets and in plasma. It might have greater biological relevance and stronger pharmacological effects than ebselen.  相似文献   

16.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

17.
Folate deaminase released from cells of Dictyostelium discoideum is heterogenous with respect to molecular weight and stability at 60°C. The most heat-stable component isoelectrofocuses in a broad band at approx. pH 6. The Km value of this component for folate is approx. 7 · 10?7 M and Mr approx. 40 000. The major portion if not all of the deaminase binds to immobilized concanavalin A and lentil lectin. Extracellular folate deaminase has a pH-optimum of approx. pH 6.0. This is higher than that of lysosomal enzymes, which are also glycoproteins released into the extracellular medium.  相似文献   

18.
19.
Crafts-Brandner SJ  Law RD 《Planta》2000,212(1):67-74
Experiments were conducted to determine the relative contributions of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) activation state vis-à-vis Rubisco activase and metabolite levels to the inhibition of cotton (Gossypium hirsutum L.) photosynthesis by heat stress. Exposure of leaf tissue in the light to temperatures of 40 or 45 °C decreased the activation state of Rubisco to levels that were 65 or 10%, respectively, of the 28 °C control. Ribulose-1,5-bisphosphate (RuBP) levels increased in heat-stressed leaves, whereas the 3-phosphoglyceric acid pool was depleted. Heat stress did not affect Rubisco per se, as full activity could be restored by incubation with CO2 and Mg2+. Inhibition and recovery of Rubisco activation state and carbon dioxide exchange rate (CER) were closely related under moderate heat stress (up to 42.5 °C). Moderate heat stress had negligible effect on Fv/Fm, the maximal quantum yield of photosystem II. In contrast, severe heat stress (45 °C) caused significant and irreversible damage to Rubisco activation, CER, and Fv/Fm. The rate of Rubisco activation after alleviating moderate heat stress was comparable to that of controls, indicating rapid reversibility of the process. However, moderate heat stress decreased both the rate and final extent of CER activation during dark-to-light transition. Treatment of cotton leaves with methyl viologen or an oxygen-enriched atmosphere reduced the effect of heat stress on Rubisco inactivation. Both treatments also reduced tissue RuBP levels, indicating that the amount of RuBP present during heat stress may influence the degree of Rubisco inactivation. Under both photorespiratory and non-photorespiratory conditions, the inhibition of the CER during heat stress could be completely reversed by increasing the internal partial pressure of CO2 (Ci). However, the inhibition of the CER by nigericin, a K+ ionophore, was not reversible when the Ci was increased at ambient or high temperature. Our results indicate that inhibition of photosynthesis by moderate heat stress is not caused by inhibition of the capacity for RuBP regeneration. We conclude that heat stress inhibits Rubisco activation via a rapid and direct effect on Rubisco activase, possibly by perturbing Rubisco activase subunit interactions with each other or with Rubisco. Received: 25 February 2000 / Accepted: 13 May 2000  相似文献   

20.
Cytosine deaminase (EC 3.5.4.1) from Salmonella typhimurium has been purified 419-fold to apparent homogeneity. SDS polyacrylamide gel electrophoresis indicated that the final cytosine deaminase preparation was homogenous. The molecular weight of cytosine deaminase was determined to be approx. 230 000 containing four identical subunits with each subunit having a molecular weight of 54 000. Cytosine deaminase has a pH optimum of 7.30 to 7.50 and a temperature optimum of 45 to 50°C. Cytosine was deaminated specifically; 5-fluorocytosine was deaminated to a lesser extent. The Km and V values for cytosine were 0.74 mM and 47.16 μmole/min, respectively. As effectors of enzyme activity, PPi stimulated the deamination while metal ions and orotidine monophosphate inhibited it. The physical characteristics of cytosine deaminase lend credence to its proposed salvage role in pyrimidine metabolism as indicated previously by physiological studies (West, T.P. and O'Donovan, G.A., J. Bacteriol. (1982) 149, 1171–1174).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号