首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

2.
Cibacron blue was found to inhibit assembly and increase the critical concentration of microtubule proteins. In the presence of 4 mol Cibacron blue/mol tubulin, assembly was completely inhibited and pre-formed microtubules disassembled. Addition of 8% (v/v) dimethylsulfoxide to Cibacron blue-inhibited samples induced assembly of normal microtubules in addition to sheets of protofilaments. Disassembly was induced upon addition of 1 mM colchicine or 2mM Ca2+. No obvious difference was seen in the protein composition of these microtubules compared with controls. GTP exchange was not affected by the presence of Cibacron blue nor was GTP able to counteract its effect. This indicates that the exchangeable GTP site is not involved. The extent of assembly of phosphocellulose purified tubulin in the presence of 8% (v/v) dimethylsulfoxide was only slightly less in the presence of Cibacron blue, although the assembly rate was decreased. These results suggest that Cibacron blue might alter the binding of one or more of the associated proteins stimulating assembly.  相似文献   

3.
Calf brain tubulin purified by means of ammonium sulfate fractionation, ion-exchange chromatography, and MgCl2 precipitation contains a low level of Mg2+ -dependent GTPase activity, the protein preparation being essentially homogeneous according to conventional procedures. Tubulin was freed from this possibly contaminant enzyme activity by Sephacryl S300 gel chromatography. Soluble tubulin itself showed a ligand-induced Mg2+-dependent GTPase activity in the presence of colchicine, but not of tropolone methyl ether, podophyllotoxin, or vinblastine. Tubulin also hydrolyzed GTP when assembling into microtubules. This reaction proceeded in a nonlinear fashion and was suppressed together with microtubule assembly by lowering the protein concentration under the critical concentration, adequately modifying assembly buffer conditions, or using Ca2+, tropolone methyl ether, podophyllotoxin, or vinblastine. The number of molecules of GTP hydrolyzed per molecule of tubulin polymerized was estimated to vary between 0.9 and 2.1, depending on whether morpholineethanesulfonate or phosphate assembly buffers were employed.  相似文献   

4.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

5.
The polymerization of microtubule protein from beef brain is inefficient under the same conditions which are optimal for the assembly of microtubules isolated from hog brain (0.1 m piperazine-N,N′-bis(2-ethanesulfonic acid) buffer at pH 6.94). In examining the conditions required for microtubule polymerization in both beef brain extract and purified microtuble protein, it was determined that the pH optimum was pH 6.62 or 0.3 pH unit lower than the reported optimum for hog. Other assembly requirements (ionic strength, Mg2+ and nucleotide concentration, temperature) remained essentially the same as for hog. By separating and recombining fractions of tubulin and nontubulin components prepared from beef and hog microtubule protein, the requirement for the reduction in pH was found to be due to the tubulin and not to the microtubule-associated proteins. It was also determined that the efficiency of beef tubulin assembly, as measured by the yield of microtubule polymer, decreased rapidly after slaughter with a half-time of 19 min. Furthermore, when the overall efficiency of polymerization was reduced, the extent of assembly at each cycle of purification by disassembly and assembly was also observed to be depressed. The variations in the requirements for neuronal tubulin assembly in two closely related mammals suggest that the conditions required for assembly of microtubule protein in other tissues and cell types may also be different.  相似文献   

6.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

7.
The inhibition of microtubule assembly by Ruthenium red (Deinum, J., Wallin, M., Kanje, M. and Lagercrantz, C. (1981) Biochim. Biophys. Acta 675, 209-213) could be counteracted by either taxol or dimethyl sulfoxide. Ruthenium red remained bound to the assembled microtubules. Microtubules assembled in the presence of Ruthenium red and taxol showed the typical taxol-dependent stability. The dimethyl sulfoxide-induced microtubules showed normal assembly characteristics, e.g., were GTP dependent, could be disassembled by cold, colchicine and Ca2+ and had no alterations in ultrastructure. The absolute disassembly induced by Ca2+ in the presence of dimethyl sulfoxide and Ruthenium red was dependent on the microtubule protein concentration, but independent in the absence of Ruthenium red. Ruthenium red was strongly bound to purified tubulin also in the presence of 8% (v/v) dimethyl sulfoxide. The dimethyl sulfoxide-induced assembly of purified tubulin in the presence of Ruthenium red was slightly stimulated, although the critical protein concentration was the same. It was found by resonance Raman spectroscopy with a flow technique that Ruthenium red did not bind to a specific calcium binding site on tubulin, although binding to a GTP binding site cannot be excluded. The wavenumbers of the lines in the region 375-500 cm-1 differ from those found for Ruthenium red bound to typical calcium-binding proteins such as calmodulin. Although Ruthenium red binds to serum albumin as well, the spectrum with albumin resembled that of the free dye.  相似文献   

8.
At low concentrations, vinblastine binds rapidly and reversibly to a very limited number of high affinity sites on steady-state bovine brain microtubules (mean Kd, 1.9 × 10?6m; 16.8 ± 4.3 vinblastine binding sites per microtubule) which appear to be located at one or both ends of the microtubules. At high concentrations, vinblastine binds to a high binding capacity class of sites of undetermined affinity, located on helical strands of protofilaments which form at the ends of depolymerizing microtubules, and/or along the surface of the microtubules. Substoichiometric inhibition of microtubule assembly, which occurs at low vinblastine concentrations, appears to be due to the binding of vinblastine to the high affinity class of sites. Fifty per cent inhibition of tubulin addition to the net assembly ends of steady-state microtubules occurred at 1.38 × 10?7m-drug, and at this concentration, 1.16 ± 0.27 molecules of vinblastine were bound to the high affinity class of sites. Vinblastine appeared to bind directly to the microtubule ends, and our results indicate that vinblastine inhibits the assembly of steady-state bovine brain microtubules by binding rapidly and with high affinity to one or two molecules of tubulin at the net assembly ends. Splaying and peeling of protofilaments at microtubule ends and the active depolymerization of microtubules occurred only at vinblastine concentrations greater than 1 × 10?6 to 2 × 10?6m. This action of vinblastine is associated with and may be due to the binding of vinblastine to the high capacity class of sites. Both actions of vinblastine may be due to the binding of vinblastine to the same binding sites on the tubulin molecule, with the sites exhibiting either a high or low affinity depending upon the location in the microtubule.  相似文献   

9.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   

10.
Characterization and in vitro polymerization of Tetrahymena tubulin   总被引:6,自引:0,他引:6  
Tetrahymena tubulin was purified from the cell extract using DEAE-Sephadex A-50 ion-exchanger and ammonium sulfate precipitation. About 2.2% of the total protein in the 20,000 X g supernatant was recovered as DEAE-Sephadex-purified tubulin fraction. Applying the temperature-dependent polymerization-depolymerization method to this fraction in the presence of Tetrahymena outer fibers as a seed, almost pure tubulin was obtained. Tetrahymena tubulin dimer showed different behavior on SDS-polyacrylamide gels from porcine brain tubulin, and showed very low affinity for colchicine, amounting to about one-twentieth of the binding to porcine brain tubulin. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragment induced polymerization as demonstrated by viscometric measurements, but the reconstituted microtubules were very unstable in the absence of glycerol. Microtubule-depolymerizing agents such as Ca2+ ions, low temperature, or colchicine all inhibited in vitro polymerization. Although Tetrahymena tubulin purified by the polymerization-depolymerization method could copolymerize with porcine brain microtubules, the DEAE-Sephadex-purified tubulin fraction suppressed the initial rate of porcine brain microtubule assembly in vitro. There seemed to be no differences between cytoplasmic tubulin and outer fiber tubulin in colchicine binding activity or SDS-gel electrophoretic behavior, or between the fine structure of both reconstituted microtubules observed by electron microscopy.  相似文献   

11.
The maximal stoichiometry for [3H]GTP binding to depolymerized tubulin with saturating amounts of added [3H]GTP is 0.4 mol/110,000 g protein. In contrast, 1 mol of radioactive nucleotide is incorporated into microtubules as a result of polymerization with [3H]GTP. The different stoichiometries result from a difference in the nucleotide binding properties of ring protein under polymerizing and nonpolymerizing conditions: ring protein at 0 °C is devoid of binding activity but binds added radioactive guanine nucleotide during microtubule assembly. The radioactive nucleotide which is incorporated into rings during microtubule assembly is not displaced by excess GDP, although it is at a site which is distinct from the N site.  相似文献   

12.
C M Lin  E Hamel 《Biochemistry》1987,26(22):7173-7182
We previously reported that direct incorporation of GDP (i.e., without an initial hydrolysis of GTP) into microtubules occurs throughout an assembly cycle in a constant proportion. The exact proportion varied with reaction conditions, becoming greater under all conditions in which tubulin-GDP increased relative to tubulin-GTP (low Mg2+ and GTP concentrations, high tubulin concentrations, and in the presence of exogenous GDP). These findings led us to explore further interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. We have now determined the minimum amount of tubulin-GTP required for the initiation of microtubule assembly and the relative efficiency with which tubulin-GDP participates in microtubule elongation. When GTP, GDP, and tubulin concentrations were varied at a constant Mg2+ concentration (0.2 mM), initiation of assembly required that 35% of the nucleotide-bearing tubulin be in the form of tubulin-GTP, and incorporation of tubulin-GDP into microtubules during elongation was only 60% as efficient as would be predicted on the basis of its proportional concentration in the reaction mixtures. Very different results were obtained when the Mg2+ concentration was varied. Even though Mg2+ enhances the binding of GTP to tubulin (the equilibrium constant for the exchange of GTP for GDP was 0.2 in the absence of exogenous Mg2+, 3 with 0.2 mM Mg2+, 5 with 0.5 mM Mg2+, and 11 with 2 and 4 mM Mg2+), as Mg2+ was increased the proportion of tubulin-GTP required for the initiation of microtubule assembly rose greatly, and the direct incorporation of tubulin-GDP into microtubules during elongation became progressively more efficient. In the absence of exogenous Mg2+, only 20% tubulin-GTP was required for initiation, and tubulin-GDP was directly incorporated into microtubules half as efficiently as would be predicted on the basis of its concentration in the reaction mixture. At the highest Mg2+ concentration examined (4 mM), 80% tubulin-GTP was required for initiation of assembly, and tubulin-GDP was incorporated into microtubules as efficiently as tubulin-GTP.  相似文献   

13.
The kinetics of microtubule assembly were investigated by monitoring changes in turbidity which result from the scattering of incident light by the polymer. These studies indicated that assembly occurred by a pathway involving a nucleation phase, followed by an elongation phase as evidenced by a lag in the polymerization kinetics, followed by a psuedo-first-order exponential increase in turbidity. Analytical ultracentrifugation of solutions polymerized to equilibrium showed that 6 S tubulin was the only species detectable in equilibrium with microtubules. Investigation of the elongation reaction in mixtures of 6 S tubulin and microtubule fragments demonstrated that: (1) the net rate of assembly was the sum of the rates of polymerization and depolymerization; (2) the rate of polymerization was proportional to the product of the microtubule number concentration and the 6 S tubulin concentration; and (3) the rate of depolymerization was proportional to the number concentration of microtubules. These results demonstrate that microtubule assembly occurs by a condensation polymerization mechanism consisting of distinct nucleation and elongation steps. Microtubules are initiated in a series of protein association reactions in a pathway that has not been fully elucidated. Elongation proceeds by the consecutive association of 6 S tubulin subunits onto the ends of existing microtubules. Similarly, depolymerization occurs by dissociation of 6 S subunits from the ends of microtubules. The rate constants measured for polymerization and depolymerization at 30 °C were 4 × 106m?1 s?1 and 7 s?1, respectively.  相似文献   

14.
The effect of melatonin (5-methoxy-N-acetyltryptamine) on microtubule assembly was assessed by means of viscometry, cell kinetics and [3H]colchicine binding studies. Evidence presented shows that melatonin has no effect on the in vitro assembly of bovine brain microtubules. [3H]Colchicine binding is not inhibited by melatonin in either crude or purified tubulin preparations. Furthermore, no increase in mitotic index is observed when Chinese hamster ovary cells are treated with melatonin; nor is neurite formation in neurobiastoma cells in culture affected by melatonin. It is concluded that melatonin does not interact with microtubules in a manner similar to colchicine and the Vinca alkaloids and it should not be classified as a colchicine-like mitotic inhibitor.  相似文献   

15.
Assembly properties of tubulin after carboxyl group modification   总被引:3,自引:0,他引:3  
By chemically modifying carboxyl groups we have investigated the role of the highly acidic COOH-terminal domains of alpha- and beta-tubulin in regulating microtubule assembly. Using a carbodiimide-promoted amidation reaction, as many as 25 carboxyl groups were modified by the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and an amine nucleophile, [14C] glycine ethyl ester or [3H]methylamine, to assembled microtubules. Modification occurred primarily in the carboxyl-terminal region as demonstrated by limited proteolysis of modified tubulin by trypsin, chymotrypsin, subtilisin, and carboxypeptidase Y. Modified tubulin polymerized into microtubules with a critical concentration that was 15% of that for unmodified tubulin. Assembly of modified tubulin and microtubules formed from modified tubulin were less sensitive to Ca2+ and high ionic strength. Ca2+ binding studies under low ionic strength conditions indicated that modified tubulin does not contain the high affinity Ca2+ binding site. While assembly of unmodified tubulin was stimulated by Mg2+ up to 10 mM, assembly of the modified protein was inhibited by concentrations greater than 1 mM. When 24 residues were modified, polymerization was no longer stimulated by microtubule-associated proteins (MAPs) or polylysine and incorporation of high molecular weight MAPs into the polymers was reduced by about 70% compared to unmodified tubulin. These studies demonstrate that chemical modification of carboxyl groups in tubulin, most of which are localized in the COOH-terminal region, leads to an enhanced ability to polymerize and a decrease in interaction with MAPs and other positively charged species.  相似文献   

16.
Lopus M  Panda D 《The FEBS journal》2006,273(10):2139-2150
Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 microM. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 microM, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 microM), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.  相似文献   

17.
Estramustine phosphate, an estradiol nitrogen-mustard derivative is a microtubule-associated protein (MAP)-binding microtubule inhibitor, used in the therapy of prostatic carcinoma. It was found to inhibit assembly and to induce disassembly of microtubules reconstituted from phosphocellulose-purified tubulin with either tau, microtubule-associated protein 2, or chymotrypsin-digested microtubule-associated protein 2. Estramustine phosphate also inhibited assembly of trypsin-treated microtubules, completely depleted of high-molecular-weight microtubule-associated proteins, but with their microtubule-binding fragment present. In all cases estramustine phosphate induced disassembly to about 50%, at a concentration of approximately 100 microM, at similar protein concentrations. However, estramustine phosphate did not affect dimethyl sulfoxide-induced assembly of phosphocellulose-purified tubulin. Estramustine phosphate is a reversible inhibitor, as the nonionic detergent Triton X-100 was found to counteract the inhibition in a concentration-dependent manner. The reversibility was nondisruptive, as Triton X-100 itself did not affect microtubule assembly, microtubule protein composition, or morphology. This new reversible MAPs-dependent inhibitor estramustine phosphate affects the tubulin assembly, induced by tau, as well as by the small tubulin-binding part of MAP2 with the same concentration dependency. This indicates that tau and the tubulin-binding part of MAP2, in addition to their assembly promoting functions also have binding site(s) for estramustine phosphate in common.  相似文献   

18.
Centrosome assembly is important for mitotic spindle formation and if defective may contribute to genomic instability in cancer. Here we show that in somatic cells centrosome assembly of two proteins involved in microtubule nucleation, pericentrin and gamma tubulin, is inhibited in the absence of microtubules. A more potent inhibitory effect on centrosome assembly of these proteins is observed after specific disruption of the microtubule motor cytoplasmic dynein by microinjection of dynein antibodies or by overexpression of the dynamitin subunit of the dynein binding complex dynactin. Consistent with these observations is the ability of pericentrin to cosediment with taxol-stabilized microtubules in a dynein- and dynactin-dependent manner. Centrosomes in cells with reduced levels of pericentrin and gamma tubulin have a diminished capacity to nucleate microtubules. In living cells expressing a green fluorescent protein-pericentrin fusion protein, green fluorescent protein particles containing endogenous pericentrin and gamma tubulin move along microtubules at speeds of dynein and dock at centrosomes. In Xenopus extracts where gamma tubulin assembly onto centrioles can occur without microtubules, we find that assembly is enhanced in the presence of microtubules and inhibited by dynein antibodies. From these studies we conclude that pericentrin and gamma tubulin are novel dynein cargoes that can be transported to centrosomes on microtubules and whose assembly contributes to microtubule nucleation.  相似文献   

19.
Ruthenium red, a powerful inhibitor of Ca2+ transport by mitochondria, does not inhibit the active Ca2+ uptake by sarcoplasmic reticulum isolated from rabbit skeletal muscle promoted by 5 mM ATP-Mg in the presence or absence of potassium oxalate. Although concentrations of ruthenium red up to 100 μM do not affect the active uptake of Ca2+, 25 μM of the inorganic dye inhibit the passive binding of Ca2+ by about 50%. This inhibitory effect is observed in sarcoplasmic reticulum even after its lipid fraction is extracted with acetone.Although active Ca2+ uptake by sarcoplasmic reticulum is not inhibited by ruthenium red, in the absence of oxalate it inhibits significantly the Ca2+-dependent ATPase activity but not the Mg2+-ATPase. However, if potassium oxalate is present, the Ca2+-stimulated ATPase is not sensitive to the dye. It is not clear how oxalate functions to protect the Ca2+-ATPase against the inhibitor effect of ruthenium red.The high sensitivity to ruthenium red of the Ca2+ transport mechanism in mitochondria as compared to the Ca2+ transport in sarcoplasmic reticulum may be useful in determining the extent to which each organelle functions in the cell to regulate intracellular free Ca2+.  相似文献   

20.
Calcium binding to isolated erythrocyte membranes was stimulated by ATP. This stimulatory effect of ATP required Mg2+.Ethacrynic acid and ruthenium red inhibited the stimulatory effect of ATP.About 80% of the bound Ca2+ was associated with the membrane protein.The strongly bound Ca2+ was confined to two high molecular weight membrane proteins.Increasing amounts of Ca2+ bound to the membrane inhibited Na+ binding in the presence of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号