首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of administration of D-Trp6-Luteinizing Hormone-Releasing Hormone (LH-RH) on synthesis and degradation of cyclic nucleotides was studied in the rat. There were no significant changes in the rate of synthesis and degradation of cyclic AMP in the ovary, testis and pituitary gland of D-Trp6-LH-RH-treated rats as compared to controls. On the other hand, the levels of cyclic GMP and activity of guanylate cyclase were significantly higher in the ovary and testis as well as in the pituitary gland of animals which received the analog. The rate of hydrolysis of cyclic GMP was unchanged by the administration of D-Trp6-LH-RH. Interestingly, the cyclic CMP phosphodiesterase seemed to be activated in animals treated with D-Trp6-LH-RH.  相似文献   

2.
Analogs of luteinizing hormone- releasing hormone (LHRH) having higher biological activity than LHRH itself are being mainly used to study the biological effects and the mechanism of action of LHRH. In the present study, conditions for the direct 3H-labelling at the histidine residue of analogs of LHRH were worked out, circumventing the synthesis of precursor peptides for labelling. [D-Phe6,desGly10]-LHRH ethylamide and [D-Ser(But)6,desGly10]-LHRH ethylamide were tritiated by tritium gas and a 10% Pd/Al2O3 catalyst to high specific radioactives. The labelled peptides are sufficiently stable to be used in biochemical studies. The degradability of the analogs by homogenates of various of rats was compared with that of the native LHRH. The analogs were shown to be distinctly degradable, but to a lower extent. The kidney homogenate degrades the analogs [D-Phe6,desGly10]- and [D-Ser(But)6, desGly10]-LHRH ethylamide with 35 and 50%, respectively, of the velocity observed with LHRH, whereas the degradation velocity of the analogs by a homogenate of the hypothalamus and pituitary is only 10% of that of LHRH. It is suggested that the lower degradability of tha analogs at peripheral sites and target sites (pituitary, ovary) explains partly their higher biological activity.  相似文献   

3.
Cyclic GMP contents of the thyroid gland and ovary were significantly increased in response to single and multiple treatments of bromocriptine, an effect which was antagonized by sulpiride. Liver and adrenocortical cyclic GMP levels have not been changed by bromocriptine although sulpiride alone induced a significant reduction. The data may indicate the presence of D2 receptors in ovary and thyroid gland that are related to cyclic GMP.  相似文献   

4.
In a clonal strain of rat pituitary tumour cells (GH4C1 cells), thyroliberin stimulated prolactin secretion and synthesis: effects that could be demonstrated after 5 min and 4–5 h of treatment, respectively. Within 0.5–5 min after addition of thyroliberin, maximal increases (2–4 hold) in cellular cyclic GMP concentrations were observed, and this rise preceded or occurred simultaneously with that of cyclic AMP. After 60 min of treatment the concentrations of the cyclic nucleotides had returned to control values. Half maximal and maximal stimulation of cyclic GMP elevations were obtained with approx. 2·109 and approx. 27·10?9 thyroliberin, respectively. Aminophylline increased both cyclic GMP and cyclic AMP, and potentiated the stimulatory effects of thyroliberin on both cyclic nucleotides. The dibutyryl derivative of cyclic GMP (10?4–10?6 M) stimulated prolactin synthesis, but not hormone release. Prostaglandin E2 (3·10?7 M) stimulated cellular cyclic AMP concentrations, but did not affect cyclic GMP levels. We conclude that thyroliberin in the GH4C1 ccell strain stimulates cyclic GMP formation, in addition to elevate cyclic AMP concentrations. The stimulatory effect on cyclic GMP is probably not secondary to the rise in cyclic AMP concentration, since prostaglandin E2 elevates only cyclic GMP is involved in the action of thyroliberin on prolactin, the present results suggest a role on hormone synthesis.  相似文献   

5.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

6.
Synthetic somatostatin stimulated cyclic GMP accumulation with dose dependency (10 ng/ml – 10 μg/ml in a dose examined) in rat anterior pituitary gland in vitro. The stimulation of cyclic GMP levels in the gland was observed after 2 min incubation with somatostatin. Cyclic AMP production induced by TRH or PGE1 was supressed by this GH release inhibiting factor, while cyclic GMP concentration in the gland was elevated. The present results seem to suggest that inhibitory effect on GH release by somatostatin in anterior pituitary gland is mediated through change in concentration of cyclic AMP and cyclic GMP in the target cells.  相似文献   

7.
M Zatz  M Weinstock 《Life sciences》1978,22(9):767-772
Electrical field stimulation caused the release of preloaded 3H-norepinephrine and of cyclic GMP from the rat pineal gland. Increased release of catecholamines and of cyclic nucleotide occurred at low frequency and current, and was largely dependent on the presence of intact nerve endings and extracellular calcium. Presynaptic synthesis and release of cyclic GMP appears to accompany the exocytotic release of neurotransmitter.  相似文献   

8.
Guanosine 3′,5′-monophosphate (cyclic GMP) was found in the accessory gland of reproductively mature male house crickets (Acheta domesticus (L.)) up to the exceptionally high level of 500 pmol/mg protein (190−4) mol/kg wet weight). The identity of cricket cyclic GMP was confirmed by enzymatic and spectral analysis. A survey of 10 closely related species of Orthoptera indicated that high levels of cyclic GMP in the accessory gland occur only in the subfamily Gryllinae, to which A. domesticus belongs. In these crickets GMP in the accessory gland increases together with protein content during two weeks after the final molt. Levels are not augmented by dissection, and are independent of the presence of sperm in the seminal vesicles and of the production of spermatophores by the gland. The function of cyclic GMP in the accessory gland is not yet understood.  相似文献   

9.
The ability of a large number of catecholamine analogs to stimulate DNA synthesis in the mouse parotid gland in vivo was compared to their effect on the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) in this tissue. In the normal parotid gland the level of cyclic GMP is very low (10?9 moles/kg wet wt), being only 1/800th of the cyclic AMP concentration. Isoproterenol increases the levels of cyclic AMP and cyclic GMP 30- and 3-fold, respectively. The increase in cyclic AMP is biphasic with an apparent early maximum at 2.5 min and a main peak at 15 min while the increase in cyclic GMP is monophasic with maximum levels at 15 min. Other analogs showed a similar effect on cyclic AMP levels but the time course of increases in cyclic GMP was very variable with peak stimulation as early as 1 min in some cases. The ability of analogs to cause the accumulation of cyclic AMP was correlated with their capacity to activate adenylate cyclase in parotid extracts and to act as β-adrenergic agonists in other systems. All compounds which raised cyclic AMP levels stimulated DNA synthesis but a number of other analogs also stimulated DNA synthesis. The effects of these analogs have been correlated with their ability to raise the intracellular concentration of cyclic GMP. Cholinergic agents also cause the accumulation of cyclic GMP but the effect of the analogs does not appear to be mediated through the cholinergic system as atropine does not block their effects and cholinergic agonists do not stimulate DNA synthesis. It is suggested that cholinergic agonists and the catecholamine analogs act primarily on the duct and acinar cells, respectively.Significant with inhibitors of the rises in cyclic nucleotide levels suggest that in isoproterenol stimulation it is the rise in cyclic GMP which is the more significant event in relation to stimulation of DNA synthesis.  相似文献   

10.
In dissociated single cells from the sponge Geodia cydonium, DNA synthesis is initiated after incubation with a homologous, soluble aggregation factor. During the DNA -initiation phase the cyclic AMP - and cyclic GMP levels vary drastically; the cyclic AMP content drops from 2.2 pmol/106 cells to 0.3 pmol/106 cells while the cyclic GMP content increases from 0.6 pmol to 3.7 pmol/106 cells. the activity of neither the adenylate cyclase nor of the guanylate cyclase isolated from cells which have been incubated for different periods of time with the aggregation factor, is changed. the soluble as well as the particulate enzyme activities were checked in vitro. the cyclic nucleotide receptors have been isolated from the sponge cells and characterized with respect to their molecular weight, dissociation constant for cyclic AMP or cyclic GMP and intracellular concentration. None of these parameters are altered during aggregation factor-mediated DNA initiation. From these data it is concluded that the regulation of cyclic nucleotide levels is a consequence of a changed activity of nucleotide cyclases or of phosphodiesterases, but this is presumably not caused by a changed rate of synthesis of nucleotide cyclases or of cyclic nucleotide receptors.  相似文献   

11.
Guanylate cyclase (E.C. 4.6.1.2.) was investigated in the accessory reproductive gland of the male house cricket, Acheta domesticus, which is known to accumulate exceptionally high levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Accessory gland guanylate cyclase activity was linear with time for at least one hour, and with enzyme concentration to about 5 mg soluble protein per ml. Activity was dependent on Mn2+ and was maximal at pH 7.3 to 8.0. Sodium fluoride had no effect on activity, but sodium azide was slightly stimulatory. About 80% of the activity was sedimentable at 16,000 g, and both soluble and particulate activities were increased slightly in the presence of Triton X-100. Kinetic analysis indicated half-maximal velocity at 85 μM GTP in the presence of excess Mn2+, and reciprocal plots were concave upward. Changes in activity during maturation of the gland were small, and did not provide evidence for a regulatory role of guanylate cyclase in the accumulation of accessory gland cyclic GMP. The regulation and rôle of cyclic GMP in the accessory gland are discussed.  相似文献   

12.
During a 10-h incubation, cyclic nucleotide phosphodiesterase inhibitors, viz. theophylline and quinine, were found to reduce by 40-50% the rate of [3H] leucine incorporation into casein in mammary gland explants from midpregnant mice. Further, dibutyryl cyclic AMP as well as the phosphodiesterase inhibitors were found to abolish the prolactin stimulation of leucine incorporation into casein. Elevated levels of cyclic AMP therefore appear to impair the functionality of the mammary gland. Although cyclic GMP was previously shown to stimulate RNA synthesis in the mammary gland in a prolactin-like manner, it had no effect on the rate of casein synthesis in mammary gland explants. Preincubation of explants with cyclic GMP did, however, attenuate the time required for the commencement of the prolactin stimulation of the rate of leucine incorporation into casein. A physiological role of cyclic GMP for the regulation of the rate of casein synthesis is thus suggested.  相似文献   

13.
Abstract: The mechanism by which cyclic GMP synthesis is activated through a nucleotide receptor was studied in mouse neuroblastoma × rat glioma hybrid cells [108CC15 (NG 108-15)]. The transient increase in cyclic GMP level induced by ATP reached its maximum at 20 s and lasted for ~1 min. The maximal rise in cyclic GMP level achieved was highest for ATP and decreased in the following order: ATP = adenosine 5′-(γ-thio)triphosphate > UTP = 2-methylthio-ATP > ADP ? CTP, AMP, α,β-methylene-ATP, 2′- and 3′-O-(4-benzoylbenzoyl)ATP. The EC50 of 1 ± 0.2 µM for UTP was significantly lower than that for ATP (14 ± 8 µM) and for all the other nucleotides tested. The rank order of potency is consistent with the pharmacology of a P2u receptor. At submaximal concentrations of the nucleotides ATP and UTP, the rise in cyclic GMP level was inhibited by suramin (IC50 = 40–60 µM) or the pyridoxal phosphate analogue pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (IC50 = 20–30 µM). Pretreatment of cells with the Ca2+ ionophore ionomycin or with 2,5-di(tert-butyl)-1,4-benzohydroquinone, an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, a maneuver to deplete internal Ca2+ stores, suppressed the ATP- or UTP-induced stimulation of cyclic GMP synthesis. Similarly, loading of the cells with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid inhibited cyclic GMP formation by ATP. Preincubation with forskolin to raise the cyclic AMP level potentiated the ATP-induced rise in cyclic GMP level by 60%. The cyclic GMP response caused by ATP was suppressed either by arginine analogues (IC50 for nitroarginine = 1 µM) or by hemoglobin (IC50 = 2 µM). This indicates that ATP/UTP via a P2-receptor causes formation of nitric oxide, which activates guanylate cyclase. The synthesis of nitric oxide depends on a preceding rise in cytosolic Ca2+ level, mostly due to release of Ca2+ from internal stores. Bradykinin induces a rise in cyclic GMP level with an amplitude and time course comparable to that caused by ATP. Therefore, we studied cross-desensitization between ATP and bradykinin receptors. Pretreatment with bradykinin completely suppressed a subsequent response to ATP. However, stimulation with ATP reduced a following response to bradykinin by ~40% only. This indicates a heterologous cross-desensitization predominantly in one direction (bradykinin ? ATP).  相似文献   

14.
Corpora allata from Diploptera punctata females at adult ecdysis or at the end of the last-larval stadium, when implanted into decapitated females, underwent a cycle of juvenile hormone synthesis similar in timing and magnitude to that of glands implanted into control animals which had been starved and allatectomized. Starvation did not alter the cycle in rates of juvenile hormone synthesis of sham-operated animals.Decapitation of ovariectomized animals resulted in no cycle in rates of juvenile hormone synthesis by implanted adult corpora allata; however, implantation of an ovary along with the corpora allata into decapitated, ovariectomized hosts resulted in a cycle of juvenile hormone synthesis. In control animals, which retained their heads but were starved and allatectomized as well as ovariectomized, the implanted corpora allata showed a cycle of juvenile hormone synthesis only when implanted with an ovary. The maximal rates of juvenile hormone synthesis by the corpora allata in both experimental and control conditions were lower than normal, likely due to the repeated trauma of surgery. However, at no time from eclosion to the end of the first gonotrophic period was the brain necessary for the cyclic response of the corpora allata to the presence of the ovary.  相似文献   

15.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

16.
Cyclic AMP and cyclic GMP levels were measured in the anterior and posterior pituitary, hypothalamus, pineal and cerebellum of female rats sacrificed during proestrus, metestrus and diestrus. In the first experiment rats were sacrificed by microwave irradiation between 0900 and 1100, between 1600 and 1800 and between 2100 and 2300. Cyclic AMP and cyclic GMP levels did not vary in any region tested as a function of the estrous cycle except for slightly elevated cyclic GMP levels in the posterior pituitary during proestrus. However the time of day at which the animals were sacrificed affected levels of cyclic AMP in the hypothalamus and cerebellum and levels of cyclic GMP in the cerebellum. In a second experiment female rats were all sacrificed between 2130 and 2330 during proestrus and diestrus. In this experiment rats were sacrificed either immediately upon removal from the home cage or after 10 min of immobilization stress, or after 10 min of open field activity. No differences in pituitary cyclic nucleotides were seen between proestrous and diestrous animals. However, stressed animals showed large cyclic AMP increases in the pituitary, and activity increased cyclic GMP levels in the cerebellum and pineal.  相似文献   

17.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of 45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

18.
PROTEIN TURNOVER DURING MATURATION OF MOUSE BRAIN TISSUE   总被引:1,自引:0,他引:1  
The measurement of protein turnover involves the product of the rates of protein synthesis and degradation. It is the dynamic balance between these two components that determines the measured net rate of protein synthesis. The data reported here show that brain cells from newborn animals incorporate arginine-14C into acid-insoluble protein at a rate 10-fold greater than the rate for brain cells obtained from 15-day old animals. This difference in incorporation occurred even though the rate of arginine accumulation and the resulting pool size of radioactive precursor were similar for both ages. The measurement of protein turnover in brain cell suspensions prepared from 1-day old animals was shown to be complex and to exhibit a cyclic phenomenon in regard to arginine-14C incorporation into and release from protein. The variation in half-life calculations (0.5–3.5 hr) due to this cyclic phenomenon is discussed. Although puromycin was added in an attempt to amplify the rate of degradation by preventing the synthesis of new protein, it was found that degradation was inhibited as well, suggesting a relationship between protein synthesis and degradation.  相似文献   

19.
Lithium ions accumulated consistently in the pituitary and thyroid of rats at concentrations significantly greater than in plasma. There was also a significant, although lower, accumulation of Li+ in the adrenal gland. No accumulation of lithium ion was noted in the testis or in the ovary. The possible significance of these findings with regard to some of the side effects of lithium carbonate treatment is discussed.  相似文献   

20.
In an attempt to correlate changes in cyclic nucleotide levels with in vivo growth of the rat adrenal gland we have measured adrenal cyclic AMP and cyclic GMP in normal, hyperplastic, and neoplastic rat adrenals. The first group of animals were subject to either unilateral adrenalectomy (ADX) or acute hypophysectomy 1 h prior to unilateral adrenalectomy (HADX). Cyclic nucleotides were measured in the contralateral adrenal post-operatively. In HADX rats cyclic GMP rose steadily throughout the 7 day study period, while ADX rats exhibited significant decreases in adrenal cyclic GMP. Cyclic AMP remained approximately 1.5 pm/mg tissue in HADX rats, while in ADX rats there was significant elevation of adrenal cyclic AMP at all time points. Cyclic GMP/cyclic AMP ratios remained constant in HADX animals; however, the growing adrenals of ADX animals exhibited depressed cyclic GMP/cyclic AMP ratios at all time periods.Adrenal hyperplasia was induced in a seond group of animals by a transplantable, corticotropin-secreting, pituitary tumor. Adrenals from age-matched animals served as controls. Adrenal cyclic AMP was significantly elevated in tumor-bearers at a time correspinding to the peak accumulation of adrenal weight, protein and DNA in these animals. In contrast, adrenal cyclic GMP in both tumor-beares and control animals fell steadily throughout the study period. Cyclic GMP/cyclic AMP ratios of control animals decreased from 2 to 3 weeks post-transplant remaining at the 3 week value during the period corresponding to rapid adrenal growth in tumor-bearers. The cyclic GMP/cyclic AMP ratio in the hyperplastic adrenals of tumor-bearers decreased steadily throughout their rapid growth period, suggesting a positive correlation between adrenal growth and depression of the cyclic GMP/cyclic AMP ratio.Cyclic nucleotide levels in neoplastic adrenals of rats bearing the transplantable adrenocortical carcinoma 494 were compared with cyclic nucleotides in normal rat adrenal glands. Cyclic AMP was not different in the two groups. However, the cyclic GMP content of neoplastic adrenals was significantly lower than that of normal adrenal tissue, causing a suppression of the cyclic GMP/cyclic AMP ratio in the neoplastic tissue. Thus, measurement of adrenal cyclic nucleotides in both hyperplastic and neoplastic rat adrenal glands suggests that adrenal growth in vivo may be characterized by a depression of the cyclic GMP/cyclic AMP ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号