首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
Tension development, immediate stiffness and ATPase of chemically skinned myocardial strips were measured in solutions with varying concentrations of phosphate (Pi) or vanadate (predominantly H2VO4 at pH 7) ion. Vanadate and Pi decreased stiffness in proportion to tension. The results show that, like Pi, vanadate accelerates the turnover rate of cross-bridges, but is effective at about 1/500 the concentration required for the Pi effect. Both Pi and vanadate increased the energy cost of isometric tension maintenance (that is, the ratio of ATPase to tension) and increased the velocity of delayed tension development following quick stretch of the chemically skinned myocardial strips. The results also show that changes in the rate of rise of delayed tension during stretch activation probably reflect changes in the kinetics of the biochemical cycle of the cross-bridges.  相似文献   

2.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

3.
In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.  相似文献   

4.
The thiadiazinon derivative EMD 57033 has been found previously in cardiac muscle to increase isometric force generation without a proportional increase in fiber ATPase, thus causing a reduction in tension cost. To analyze the mechanism by which EMD 57033 affects the contractile system, we studied its effects on isometric force, isometric fiber ATPase, the rate constant of force redevelopment (k(redev)), active fiber stiffness, and its effect on Fo, which is the force contribution of a cross-bridge in the force-generating states. We used chemically skinned fibers of the rabbit psoas muscle. It was found that with 50 microM EMD 57033, isometric force increases by more than 50%, whereas Kredev, active stiffness, and isometric fiber ATPase increase by at most 10%. The results show that EMD 57033 causes no changes in cross-bridge turnover kinetics and no changes in active fiber stiffness that would result in a large enough increase in occupancy of the force-generating states to account for the increase in active force. However, plots of force versus length change recorded during stretches and releases (T plots) indicate that in the presence of EMD 57033 the y(o) value (x axis intercept) for the cross-bridges becomes more negative while its absolute value increases. This might suggest a larger cross-bridge strain as the basis for increased active force. Analysis of T plots with and without EMD 57033 shows that the increase in cross-bridge strain is not due to a redistribution of cross-bridges among different force-generating states favoring states of larger strain. Instead, it reflects an increased cross-bridge strain in the main force-generating state. The direct effect of EMD 57033 on the force contribution of cross-bridges in the force-generating states represents an alternative mechanism for a positive inotropic intervention.  相似文献   

5.
K Kagawa  K Horiuti    K Yamada 《Biophysical journal》1995,69(6):2590-2600
Using flash photolysis of caged ATP in skinned muscle fibers from rat psoas, we examined the inhibitory effects of 2,3-butanedione monoxime (BDM) on the contraction kinetics and the rate of ATP hydrolysis of the cross-bridges at approximately 10 degrees C. The hydrolysis rate was estimated from the stiffness records. The effects of BDM were compared with those of orthophosphate (P(i)) and of reduction in [Ca2+] (low Ca2+), and it was found that i) BDM and low Ca2+ inhibited ATPase activity to the same extent as they inhibited the steady tension, whereas P(i) inhibited ATPase activity much less than tension; ii) BDM and P(i) decreased tension per stiffness during the steady contraction more than did low Ca2+; iii) neither BDM nor low Ca2+ affected the initial relaxation of the fiber on release of ATP, but P(i) slightly slowed it; and iv) BDM hardly influenced the rate of contraction development after relaxation, although P(i) and low Ca2+ accelerated it. We concluded that BDM inhibits the Ca(2+)-regulated attachment of the cross-bridges and force-generation of the attached cross-bridges.  相似文献   

6.
Both ADP production and tension have been measured in segments of chemically skinned fibers contracting at different Ca2+ concentrations. Full mechanical activation occurred between pCa 7.00 and pCa 6.50. The total ATPase was due to both actomyosin and non-actomyosin ATPase. Actomyosin ATPase was observed at pCa 7.09 without accompanying tension. The Ca2+ dependence of tension was steeper than actomyosin ATPase. This finding implies some rate constants of the mechanochemical cycle are Ca2+ dependent. Non-actomyosin ATPase was measured in fibers stretched beyond overlap of the thick and thin filaments. Sarcoplasmic reticulum was isolated and sarcoplasmic reticulum activity was measured in vitro under the same conditions as the single-fiber experiments. Non-actomyosin ATPase in the single fibers was found to be small compared to maximally activated actomyosin ATPase but larger than the ATPase that could be attributed to sarcoplasmic reticulum activity.  相似文献   

7.
Incubation experiments were carried out to evaluate the feasibility of extracting phosphorus from soil by embedding iron oxide-impregnanted filter paper strips (Pi strips) in soils having a wide range in pH, texture, and extractable-P contents. Under flooded conditions, the amount of P extracted by the Pi strips increased with the period of submergence and embedding time of the Pi strips. Under unsaturated conditions, the Pi strips were found to extract P from soils over a wide range in moisture conditions; however, keeping the soil at moisture level between saturation and field capacity was found to result in maximal sorption of P by the strips. An embedding time of 16 h was found to be adequate.Phosphorus extracted by embedding Pi strips in soil columns for 16 h at field capacity moisture level correlated significantly with P extracted by shaking the soil with 0.01 M CaCl2 solution and a Pi strip for 16 h in the laboratory (r=0.94**). The P extracted by embedding Pi strips correlated best with Bray 1 P in acid soils (r=0.97**) and with Olsen P in alkaline and calcareous soils (r=0.96**). The results of the studies demonstrate the feasibility of developing a nondestructive method of monitoring changes in plant-available P in situ under field conditions.  相似文献   

8.
Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22 degrees C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5-2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force-generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation-contraction coupling.  相似文献   

9.
Effects of vanadate on the plasma membrane ATPase of red beet and corn   总被引:15,自引:14,他引:1       下载免费PDF全文
The effect of vanadate on the plant plasma membrane ATPase were investigated in plasma membrane fractions derived from corn roots (Zea mays L.) and red beets (Beta vulgaris L.). The Ki for vanadate inhibition of the plasma membrane ATPase from corn roots and red beets was between 6 and 15 micromolar vanadate. In both membrane fractions, 80% to 90% of the total ATPase was inhibited at vanadate concentrations below 100 micromolar. Vanadate inhibition was optimal at pH 6.5, enhanced by the presence of K+, and was partially reversed by 1 millimolar EDTA. The Mg:ATP kinetics for the plasma membrane ATPase were hyperbolic in both the absence and presence of vanadate. Vanadate decreased both the Km and Vmax of the red beet plasma membrane ATPase, indicating that vanadate inhibits the ATPase uncompetitively. These results indicate many similarities with respect to vanadate inhibition between the plant plasma membrane ATPase and other major iontranslocating ATPases from fungal and animal cells. The high sensitivity to vanadate reported here, however, differs from other reports of vanadate inhibition of the plant plasma membrane ATPase from corn, beets, and in some instances oats.  相似文献   

10.
Bundles of myofibrils prepared from the dorsal longitudinal flight muscles of giant water bugs show oscillatory contractile activity in solutions of low ionic strength containing ATP and 10-8-10-7 M Ca2+. This is due to delay between changes of length and changes of tension under activating conditions. The peculiarities of insect fibrillar muscle which give rise to this behavior are (1) the high elasticity of relaxed myofibrils, (2) a smaller degree of Ca2+ activation of ATPase activity in unstretched myofibrils and extracted actomyosin, and (3) a direct effect of stretch on ATPase activity. It is shown that the cross-bridges of striated muscle are probably formed from the heads of three myosin molecules and that in insect fibrillar muscle the cycles of mechanochemical energy conversion in the cross-bridges can be synchronized by imposed changes of length. This material is more suitable than vertebrate striated muscle for a study of the nature of the elementary contractile process.  相似文献   

11.
Thermoelastic properties of cross-bridges were measured by application of small sinusoidal length perfurbations and submillisecond Joulean temperature jump to chemically skinned muscle fibre removed from rigor solution. The thermal expansion coefficient of fibres was 4.2 +/- 1.0 X 10(-5) K-1. We have observed neither rubber-like stiffness increase, nor tension increase and stiffness decrease (which are expected if alpha-coil melting occurs) after temperature jump.  相似文献   

12.
Summary The anterior byssus retractor muscle (ABRM) ofMytilus edulis was skinned by freeze drying. Tension transients in response to quick length steps were recorded during isometric contraction induced in ATP salt solution containing 2×10–6 M Ca2+. These transients consisted of four phases similar to those described by Huxley (1974) in skeletal muscle. Under certain conditions (stretch amplitude not larger than 0.6% LO), and in particular in the presence of cyclic AMP, we observed a delayed tension rise following a quick stretch (stretch activation) which appears to be similar to the stretch activation of insect flight muscle (Jewell and Rüegg 1966).  相似文献   

13.
The kinetics of ATP-induced rigor cross-bridge detachment were studied by initiating relaxation in chemically skinned trabeculae of the guinea pig heart using photolytic release of ATP in the absence of calcium ions (pCa > 8). The time course of the fall in tension exhibited either an initial plateau phase of variable duration with little change in tension or a rise in tension, followed by a decrease to relaxed levels. The in-phase component of tissue stiffness initially decreased. The rate then slowed near the end of the tension plateau, indicating transient cross-bridge rebinding, before falling to relaxed levels. Estimates of the apparent second-order rate constant for ATP-induced detachment of rigor cross-bridges based on the half-time for relaxation or on the half-time to the convergence of tension records to a common time course were similar at 3 x 10(3) M-1 s-1. Because the characteristics of the mechanical transients observed during relaxation from rigor were markedly similar to those reported from studies of rabbit psoas fibers in the presence of MgADP (Dantzig, J. A., M. G. Hibberd, D. R. Trentham, and Y. E. Goldman. 1991. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. 432:639-680), direct measurements of MgADP using [3H]ATP in cardiac tissue in rigor were made. Results indicated that during rigor, nearly 18% of the cross-bridges in skinned trabeculae had [3H]MgADP bound. Incubation of the tissue during rigor with apyrase, an enzyme with both ADPase and ATPase activity, reduced the level of [3H]MgADP to that measured following a 2-min chase in a solution containing 5 mM unlabeled MgATP. Apyrase incubation also significantly reduced the tension and stiffness transients, so that both time courses became monotonic and could be fit with a simple model for cross-bridge detachment. The apparent second-order rate constant for ATP-induced rigor cross-bridge detachment measured in the apyrase treated tissue at 4 x 10(4) M-1 s-1 was faster than that measured in untreated tissue. Nevertheless, this rate was still over an order of magnitude slower than the analogous rate measured in previous studies of isolated cardiac actomyosin-S1. These results are consistent with the hypothesis that the presence of MgADP bound cross-bridges suppresses the inhibition normally imposed by the thin filament regulatory system in the absence of calcium ions and allows cross-bridge rebinding and force production during relaxation from rigor.  相似文献   

14.
Flash-frozen myocardium samples provide a valuable means of correlating clinical cardiomyopathies with abnormalities in sarcomeric contractile and biochemical parameters. We examined flash-frozen left-ventricle human cardiomyocyte bundles from healthy donors to determine control parameters for isometric tension (Po) development and Ca2+ sensitivity, while simultaneously measuring actomyosin ATPase activity in situ by a fluorimetric technique. Po was 17 kN m−2 and pCa50% was 5.99 (28°C, I = 130 mM). ATPase activity increased linearly with tension to 132 μM s−1. To determine the influence of flash-freezing, we compared the same parameters in both glycerinated and flash-frozen porcine left-ventricle trabeculae. Po in glycerinated porcine myocardium was 25 kN m−2, and maximum ATPase activity was 183 μM s−1. In flash-frozen porcine myocardium, Po was 16 kN m−2 and maximum ATPase activity was 207 μM s−1. pCa50% was 5.77 in the glycerinated and 5.83 in the flash-frozen sample. Both passive and active stiffness of flash-frozen porcine myocardium were lower than for glycerinated tissue and similar to the human samples. Although lower stiffness and isometric tension development may indicate flash-freezing impairment of axial force transmission, we cannot exclude variability between samples as the cause. ATPase activity and pCa50% were unaffected by flash-freezing. The lower ATPase activity measured in human tissue suggests a slower actomyosin turnover by the contractile proteins.  相似文献   

15.
We developed a Markov model of cardiac thin filament activation that accounts for interactions among nearest-neighbor regulatory units (RUs) in a spatially explicit manner. Interactions were assumed to arise from structural coupling of adjacent tropomyosins (Tms), such that Tm shifting within each RU was influenced by the Tm status of its neighbors. Simulations using the model demonstrate that this coupling is sufficient to produce observed cooperativity in both steady-state and dynamic force-Ca2+ relationships. The model was further validated by comparison with reported responses under various conditions including inhibition of myosin binding and the addition of strong-binding, non-force-producing myosin fragments. The model also reproduced the effects of 2.5 mM added Pi on Ca2+-activated force and the rate of force redevelopment measured in skinned rat myocardial preparations. Model analysis suggests that Tm-Tm coupling potentiates the activating effects of strongly-bound cross-bridges and contributes to force-Ca2+ dynamics of intact cardiac muscle. The model further predicts that activation at low Ca2+ concentrations is cooperatively inhibited by nearest neighbors, requiring Ca2+ binding to >25% of RUs to produce appreciable levels of force. Without excluding other putative cooperative mechanisms, these findings suggest that structural coupling of adjacent Tm molecules contributes to several properties of cardiac myofilament activation.  相似文献   

16.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

17.
The kinetics of force production in chemically skinned trabeculae from the guinea pig were studied by laser photolysis of caged ATP in the presence of Ca2+. Preincubation of the tissue during rigor with the enzyme apyrase was used to reduce the population of MgADP-bound cross-bridges (Martin and Barsotti, 1994). In untreated tissue, tension remained constant or dipped slightly below the rigor level immediately after ATP release, before increasing to the maximum measured in pCa 4.5 and 5 mM MgATP. The in-phase component stiffness, which is a measure of cross-bridge attachment, exhibited a large decrease before increasing to 55% of that measured in rigor. Neither the rate of the decline nor of the rise in tension was sensitive to the concentration of photolytically released ATP. The rate of the decline in stiffness was found to be dependent on [ATP]: 1.8 x 10(4) M-1/s-1, a value more than four times higher than that previously measured in similar experiments in the absence of Ca2+. The rate of tension development averaged 14.9 +/- 2.5 s-1. Preincubation with apyrase altered the mechanical characteristics of the early phase of the contraction. The rate and amplitude of the initial drop in both tension and stiffness after caged ATP photolysis increased and became dependent on [ATP]. The second-order rate constants measured for the initial drop in tension and stiffness were 8.4 x 10(4) M-1 s-1 and 1.5 x 10(5) M-1 s-1. These rates are more than two times faster than those previously measured in the absence of Ca2+. The effects of apyrase incubation on the time course of tension and stiffness were consistent with the hypothesis that during rigor, skinned trabeculae retain a significant population of MgADP-bound cross-bridges. These in turn act to attenuate the initial drop in tension after caged ATP photolysis and slow the apparent rate of rigor cross-bridge detachment. The results also show that Ca2+ increases the rate of cross-bridge detachment in both untreated and apyrase-treated tissue, but the effect is larger in untreated tissue. This suggests that in cardiac muscle Ca2+ modulates the rate of cross-bridge detachment.  相似文献   

18.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

19.
On crude membrane fractions of skeletal musccle, vanadyl (IV) and vanadate (V) compounds inhibited the membrane (Na+K+)-ATPase and neutral (K+-)p-nitrophenylphosphatase equally with Ki 4×10?8 mol.1?1. Only vanadate (V) inhibited significantly the muscle (Na+K+)ATPase with Ki 1×10?6 mol.1?1, whereas vanadyl (IV) ions were almost without effect. Extracellular application of both forms of vanadium failed to inhibit the electrogenic (Na+K+) pump in intact mouse diaphragm fibres.  相似文献   

20.
Stretch induced activation and release induced deactivation of single glycerol-extracted insect flight muscle fibres were investigated. The results are interpreted to indicate that the muscle length controls the number of acting cross bridges, whereas their attachment-detachment kinetics in mainly determined by the state of strain of the cross bridges. It is concluded that the net detachment rate of the cross bridges is enhanced if the muscle is released thereby “unloading” the cross bridges. This behaviour of the unloaded cross bridge is a basic postulation of most of the molecular muscle contraction models.
  1. The delayed tension rise induced by stretches of different amplitudes could be restored to the level before the stretch by a release to the initial length.
  2. The delayed tension decrease induced by a release of moderate (up to δL=1.5% L i)amplitude is quantitatively restored within the delayed increase induced by the restretch to the initial length.
  3. Stiffness, which decreased during the delayed tension drop after release, is restored during a delayed stiffness increase effected by a restretch to the initial length.
  4. The rate and the extent of the stiffness drop after release increased with increasing amplitude of the release and with increasing temperature.
  5. After the deactivation, i.e., after tension and stiffness achieved a new steady level after the release, the attached cross bridges are already in the same state of strain as they were before the release. This finding is interpreted to indicate that within the deactivation phase all cross bridges attached prior the release are replaced by cross bridges attached after the release.
  6. The rate of tension and stiffness decay after release does not depend on the absolute muscle length but on the amplitude of the release which induced the deactivation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号