首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac output (CO) and its distribution were studied in dehydrated (37 degrees C) anesthetized (Na thiopentone) rats prior to and following heat acclimation (at 34 degrees C), using 57Co 15 micron microspheres. In non-acclimated dehydrated rats, CO decreased while heart rate (HR) increased significantly. Following acclimation CO increased without any change in HR; during dehydration CO remained elevated together with a significant increase in HR. In non-acclimated rats at low dehydration blood perfusion to peripheral thermoregulatory areas increased while perfusion of splanchnic area decreased; at high dehydration level peripheral blood flow decreased whereas splanchnic blood flow was augmented. In acclimated dehydrated rats, CO distribution to thermoregulatory areas did not change while perfusion of the splanchnic area decreased. It is suggested that following acclimation, the increased CO contributes to maintenance of thermoregulatory peripheral blood flow; in non-acclimated rats severe dehydration leads to augmented blood flow in the permeable splanchnic vascular bed, increasing efflux of plasma protein and failure of plasma volume conservation.  相似文献   

2.
Previous investigations have allowed for stratification of patients with postural tachycardia syndrome (POTS) on the basis of peripheral blood flow. One such subset, comprising "normal-flow POTS" patients, is characterized by normal peripheral resistance and blood volume in the supine position but thoracic hypovolemia and splanchnic blood pooling in the upright position. We studied 32 consecutive 14- to 22-yr-old POTS patients comprising 13 with low-flow POTS, 14 with normal-flow POTS, and 5 with high-flow POTS and 12 comparably aged healthy volunteers. We measured changes in impedance plethysmographic (IPG) indexes of blood volume and blood flow within thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations in the supine posture and during incremental tilt to 20 degrees, 35 degrees, and 70 degrees. We validated IPG measures of thoracic and splanchnic blood flow against indocyanine green dye-dilution measurements. We validated IPG leg blood flow against venous occlusion plethysmography. Control subjects developed progressive vasoconstriction with incremental tilt. Splanchnic blood flow was increased in the supine position in normal-flow POTS, despite marked peripheral vasoconstriction, and did not change during incremental tilt, producing progressive splanchnic hypervolemia. Absolute hypovolemia was present in low-flow POTS, all supine flows and volumes were reduced, there was no vasoconstriction with tilt in all segments, and segmental volumes tended to increase uniformly throughout tilt. Lower body (pelvic and leg) flows were increased in high-flow POTS at all angles, with consequent lower body hypervolemia during tilt. Our main finding is selective and maintained orthostatic splanchnic vasodilation in normal-flow POTS, despite marked peripheral vasoconstriction in these same patients. Local splanchnic vasoregulatory factors may counteract vasoconstriction and venoconstriction in these patients. Lower body vasoconstriction in high-flow POTS was abnormal, and vasoconstriction in low-flow POTS was sustained at initially elevated supine levels.  相似文献   

3.
The effects of fenoldopam, a dopamine-1 (DA-1) receptor agonist, were studied in two groups of anesthetized dogs before and after induction of splanchnic ischemia by way of hemorrhage. During the first portion of the experiment, both groups received fenoldopam (1.5 microg x kg(-1) x min(-1)) for 45 min followed by a 45-min washout. During the second portion, hemorrhage (10 ml/kg) was induced, followed by no intervention in group I (controls) and restarting of the fenoldopam infusion in group II. Prehemorrhage, fenoldopam increased composite portal blood flow by 33% (P < 0.01). After hemorrhage-induced splanchnic ischemia, fenoldopam restored portal vein blood flow to near baseline, maintained the splanchnic fraction of cardiac output, and attenuated the rise in gut mucosal PCO(2). DA-1 receptor stimulation increased portal blood flow and redistributed blood flow away from the serosal layer in favor of the mucosa during basal conditions and after hemorrhage, suggesting a more concentrated distribution of splanchnic DA-1 receptors within the mucosal layer vasculature. Fenoldopam maintained splanchnic blood flow during hypoperfusion and attenuated the splanchnic vasoconstrictive response to hemorrhage.  相似文献   

4.
The effects of intravenous norepinephrine (NE, group 1) and vasopressin (AVP, group 2) infusions on systemic, splanchnic, and renal circulations were studied in anesthetized dogs under basal conditions and during endotoxic shock. Under basal conditions, AVP infusion induced a 12 +/- 7% drop in left ventricular stroke work, a 45 +/- 5% fall in portal venous blood flow, and a 31 +/- 13% decrease in intestinal mucosal blood flow (P < 0.05). AVP also decreased splanchnic oxygen delivery (Do2) and increased splanchnic and renal oxygen extraction significantly during basal conditions. Except for more pronounced brady-cardia among animals in group 2, the systemic and splanchnic changes were comparable between study groups during endotoxic shock. AVP infusion restored renal blood flow and Do2 in endotoxic shock compared with animals resuscitated with NE, which had persistently low renal blood flow and Do2. Our data demonstrate that, in contrast to NE, administration of AVP effectively restores renal blood flow and Do2 with comparable systemic and splanchnic hemodynamic and metabolic effects in endotoxin-induced circulatory shock.  相似文献   

5.
Prior work demonstrated dependence of the change in blood pressure during the Valsalva maneuver (VM) on the extent of thoracic hypovolemia and splanchnic hypervolemia. Thoracic hypovolemia and splanchnic hypervolemia characterize certain patients with postural tachycardia syndrome (POTS) during orthostatic stress. These patients also experience abnormal phase II hypotension and phase IV hypertension during VM. We hypothesize that reduced splanchnic arterial resistance explains aberrant VM results in these patients. We studied 17 POTS patients aged 15-23 yr with normal resting peripheral blood flow by strain gauge plethysmography and 10 comparably aged healthy volunteers. All had normal blood volumes by dye dilution. We assessed changes in estimated thoracic, splanchnic, pelvic-thigh, and lower leg blood volume and blood flow by impedance plethysmography throughout VM performed in the supine position. Baseline splanchnic blood flow was increased and calculated arterial resistance was decreased in POTS compared with control subjects. Splanchnic resistance decreased and flow increased in POTS subjects, whereas splanchnic resistance increased and flow decreased in control subjects during stage II of VM. This was associated with increased splanchnic blood volume, decreased thoracic blood volume, increased heart rate, and decreased blood pressure in POTS. Pelvic and leg resistances were increased above control and remained so during stage IV of VM, accounting for the increased blood pressure overshoot in POTS. Thus splanchnic hyperemia and hypervolemia are related to excessive phase II blood pressure reduction in POTS despite intense peripheral vasoconstriction. Factors other than autonomic dysfunction may play a role in POTS.  相似文献   

6.
This study evaluated the hypothesis that active muscle blood flow is lower during exercise at a given submaximal power output after aerobic conditioning as a result of unchanged cardiac output and blunted splanchnic vasoconstriction. Eight untrained subjects (4 men, 4 women, 23-31 yr) performed high-intensity aerobic training for 9-12 wk. Leg blood flow (femoral vein thermodilution), splanchnic blood flow (indocyanine green clearance), cardiac output (acetylene rebreathing), whole body O(2) uptake (VO(2)), and arterial-venous blood gases were measured before and after training at identical submaximal power outputs (70 and 140 W; upright 2-leg cycling). Training increased (P < 0.05) peak VO(2) (12-36%) but did not significantly change submaximal VO(2) or cardiac output. Leg blood flow during both submaximal power outputs averaged 18% lower after training (P = 0.001; n = 7), but these reductions were not correlated with changes in splanchnic vasoconstriction. Submaximal leg VO(2) was also lower after training. These findings support the hypothesis that aerobic training reduces active muscle blood flow at a given submaximal power output. However, changes in leg and splanchnic blood flow resulting from high-intensity training may not be causally linked.  相似文献   

7.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

8.
Six healthy subjects were given endothelin-1, intravenously in a dose of 4 pmol.kg-1.min-1 for 20 min. Blood samples were drawn from arterial, hepatic and renal vein catheters for determinations of splanchnic and renal blood flows and the extraction of endothelin-1 in these vascular beds. Intravenous infusion of endothelin-1 increased the mean arterial blood pressure by 6.8 +/- 2.0 mm Hg (p less than 0.05) and reduced splanchnic and renal blood flows by 34% (p less than 0.005) and 26% (p less than 0.001) respectively. Return to basal flow values occurred after about 1 hr for the splanchnic and 3 hrs for the renal blood flow. The fractional extractions of endothelin-1-like immunoreactivity corresponded to 75 +/- 2% and 60 +/- 2% in the splanchnic and renal vascular beds, respectively. The disappearance curve in plasma and two half-lives of 1.4 +/- 0.1 min and 35 +/- 2.8 min respectively.  相似文献   

9.
K Takaori  K Inoue  M Kogire  R Doi  S Sumi  M Yun  N Fujii  H Yajima  T Tobe 《Life sciences》1989,44(10):667-672
Physalaemin has been reported as one of the most potent vasodilator and hypotensive peptides (1-4). In spite of these studies, however, the effect of the peptide on splanchnic circulation is not known precisely. In the present study, the effect of synthetic physalaemin on superior mesenteric arterial blood flow, portal venous blood flow and pancreatic capillary blood flow was investigated in dogs. Dose dependent increases of superior mesenteric arterial blood flow and portal venous blood flow were induced in response to physalaemin (0.1-10.0 ng/kg). Superior mesenteric arterial blood flow and portal venous blood flow attained maximal increases of 77 +/- 8.9% and 70 +/- 8.6%, respectively, at a dose of 5 ng/kg. Physalaemin caused a dose-related decrease in systemic arterial blood pressure. Pancreatic capillary blood flow did not show significant change with the administration of physalaemin. These data suggest that physalaemin may play some physiological roles in the regulation of splanchnic circulation.  相似文献   

10.
In order to study the efferent pathways of the nervous regulation of rat A and B cells, portal blood samples were obtained in vivo without interruption of the blood flow. Glucagon, insulin and catecholamines were determined and hepatic blood flow (EHBF) was estimated by a Brome-Sulfone-Phtaleine extraction method. Carotid blood pressure was monitored and a normal volaemia was maintained. Stimulation of the right vagus nerve increased EHBF and the releases of glucagon and insulin. Stimulation of splanchnic nerve increased the glucagon and catecholamine secretions and decreased that of insulin. Acute hypovolaemia as induced by blood withdrawal, caused hormonal consequences similar to those of splanchnic stimulation. It is suggested that the nervous control of pancreatic islets plays an important role in the rat species. Assessment of the haemodynamic status is critical for the valid interpretation of pancreatic hormone concentrations in experimental conditions. A sympathetic stimulation can account for the high glucagon and relatively low insulin secretions which characterize the hormonal pattern of stress.  相似文献   

11.
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (-10 to -50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20 degrees , 40 degrees , and 70 degrees ) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture.  相似文献   

12.
The distribution of cardiac output between compliant vasculature (e.g., splanchnic organs and skin) and noncompliant vasculature (e.g., skeletal muscle) is proposed to constitute an important determinant of the amount of blood available to the heart (central blood volume and pressure). The aim here was to directly test the hypothesis that diversion of blood flow from a relatively noncompliant vasculature (muscle) to compliant vasculature (splanchnic organs and skin) acts to reduce right atrial pressure. The approach was to inflate an occluder cuff on the terminal aorta for 30 s in one of two modes of ventricular pacing in five awake dogs with atrioventricular block and autonomic blockade. In one trial, cardiac output was maintained constant, meaning cuff inflation caused a portion of terminal aortic flow (a noncompliant circulation) to be diverted to the splanchnic and skin circulations (compliant circulations). In the other trial, arterial pressure was maintained constant, meaning blood flow to these other regions did not change. The response of right atrial pressure (corrected for differences in arterial pressure between the two trials) fit our hypothesis, being lower when blood flow was diverted to compliant regions. We conclude that a small (4% of cardiac output) diversion of blood flow from a noncompliant region to a compliant region reduces right atrial pressure by 0.7 mmHg.  相似文献   

13.
R Doi  K Inoue  M Kogire  S Sumi  K Takaori  M Yun  H Yajima  T Tobe 《Peptides》1988,9(5):1055-1058
Effects of intravenously administered synthetic kassinin on splanchnic circulation and exocrine pancreatic secretion were examined in six anesthetized dogs. Kassinin caused dose-related increases in the blood flow in superior mesenteric artery and portal vein, and produced an initial increase followed by a decrease in pancreatic blood flow, but did not affect the exocrine pancreatic secretion. This study demonstrates that kassinin affects splanchnic blood flow in dogs, and suggests that kassinin or a kassinin-like substance functions as a neuropeptide controlling the splanchnic circulation in mammalian species.  相似文献   

14.
The scientific objectives was to quantify the vascular changes in the brain, eye fundus, renal parenchyma, and splanchnic network. Heart, Portal, Jugular, femoral veins were investigate by Echography. The cerebral mesenteric, renal and ophthalmic arteries were investigated by Doppler. Eye fundus vein an papilla were investigated by optical video eye fundus. The Left ventricle volume decreased as usual in HDT. The cerebral and ophthalmic vascular resistances did'nt change whereas the eye fundus papilla and vein, and the Jugular vein increased. These arterial and venous data confirm the existence of cephalic venous blood stasis without sign of intracranial hypertension. On the other hand the kidney volume increased which is in agreement with blood flow stagnation at this level. At last the Mesenteric vascular resistance decreased and the Portal vein section increased in HDT which is in favor of an increase in flow and flow volume through the splanchnic area.  相似文献   

15.
Previous investigations have demonstrated a subset of postural tachycardia syndrome (POTS) patients characterized by normal peripheral resistance and blood volume while supine but thoracic hypovolemia and splanchnic blood pooling while upright secondary to splanchnic hyperemia. Such "normal-flow" POTS patients often demonstrate hypocapnia during orthostatic stress. We studied 20 POTS patients (14-23 yr of age) and compared them with 10 comparably aged healthy volunteers. We measured changes in heart rate, blood pressure, heart rate and blood pressure variability, arm and leg strain-gauge occlusion plethysmography, respiratory impedance plethysmography calibrated against pneumotachography, end-tidal partial pressure of carbon dioxide (Pet(CO2)), and impedance plethysmographic indexes of blood volume and blood flow within the thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations while supine and during upright tilt to 70 degrees. Ten POTS patients demonstrated significant hyperventilation and hypocapnia (POTS(HC)) while 10 were normocapnic with minimal increase in postural ventilation, comparable to control. While relative splanchnic hypervolemia and hyperemia occurred in both POTS groups compared with controls, marked enhancement in peripheral vasoconstriction occurred only in POTS(HC) and was related to thoracic blood flow. Variability indexes suggested enhanced sympathetic activation in POTS(HC) compared with other subjects. The data suggest enhanced cardiac and peripheral sympathetic excitation in POTS(HC).  相似文献   

16.
Experiments were carried out to determine the accuracy and validity of estimations of hepatic blood flow from clearance data during infusions of galactose in anesthetized cats. Clearance calculations were compared directly with the measured hepatic blood flows using a hepatic venous long-circuit technique. This technique allowed direct measurement and alteration of hepatic blood flow and collection of arterial and mixed hepatic venous blood samples without depletion of the animal's blood volume. It was found that infusions of galactose could not be used to estimate accurately hepatic blood flow. Infusion rate could not be used as an estimate of hepatic or splanchnic uptake owing to substantial and variable extrasplanchnic uptake. As a result, estimated hepatic flows allowing for incomplete extraction overestimated the true flow. On the other hand, extraction was less than 100%. This caused systemic galactose clearance to underestimate hepatic blood flow. These errors could cancel each other giving an apparently good estimate of hepatic flow from systemic galactose clearance. This agreement was fortuitous and occurred only at a specific dose and blood flow. We conclude that in the absence of independent measurements of both extrasplanchnic uptake and splanchnic extraction of galactose, systemic galactose clearance is not a reliable measure of hepatic blood flow in anesthetized cats. Until proved otherwise, it seems likely that this is also true in humans.  相似文献   

17.
S Sumi  K Inoue  M Kogire  R Doi  K Takaori  T Suzuki  H Yajima  T Tobe 《Life sciences》1987,41(13):1585-1590
Two novel peptides which exert a potent stimulant effect on rat uterus smooth muscle have recently been identified in porcine spinal cord. These peptides designated neuromedin U-8 and U-25 have been reported to exert a hypertensive effect in rats. But further biological activities are not known. In the present study, the effect of these peptides on blood flow in portal vein, superior mesenteric artery and pancreatic tissue and on blood pressure were examined in dogs, utilizing recently developed ultrasonic transit time volume flow meter and laser Doppler flow meter. Neuromedin Us potently reduced blood flow in superior mesenteric artery. The minimum reductions could be observed even at very small doses of neuromedin U-25 (32 fmol/kg) and U-8 (90 fmol/kg), while the maximal reductions of 48.4 and 51.0% were attained at the doses of 320 pmol/kg (U-25) and 900 pmol/kg (U-8), respectively. These peptides also reduced portal vein blood flow, and the maximal reductions of 42.1 and 37.2% were attained at the doses of 32 pmol/kg (U-25) and 90 pmol/kg (U-8), respectively. On the other hand, blood flow in pancreatic tissue increased slightly with the maximal increases of 13.8% at 3.2 pmol/kg (U-25) and 11.8% at 9 pmol/kg (U-8), respectively. The maximal increases of blood pressure were 5.2% at 320 pmol/kg (U-25) and 4.3% at 90 pmol/kg (U-8). Furthermore, neither neuromedin U-25 nor U-8 influenced the axillary artery blood flow, suggesting their selective effect on splanchnic blood flow. Because of the potent and probably selective activity on splanchnic circulation, neuromedin U-25 and U-8 may well be recognized as physiologically significant novel neuropeptides or hormones.  相似文献   

18.
This study examines the hypothesis that acute thermal injury decreases renal and splanchnic blood flow which correlates with altered endogenous vasodilator eicosanoid release. Anesthetized male Wistar rats were subjected to sham or a non-resuscitated 30% total body surface area burn. At 1, 2, 4, 8, and 24 h post-burn mean arterial pressure as well as superior mesenteric and renal artery in vivo blood flow were measured. The superior mesenteric and renal arteries were cannulated and perfused in vitro with their end organs with Krebs buffer (pH 7.4, 37°C). Renal and splanchnic 6-keto-PGF (PGI2), PGE2, and thromboxane B2 (TXB2) release were measured by EIA at 15 min of perfusion. Renal and superior mesenteric artery blood flow decreased by 40% or more at 1 and 2 h post-burn despite mean arterial pressure remaining unchanged. The major eicosanoids released were PGI2 from the splanchnic bed and PGI2 and PGE2 from the kidney. Splanchnic PGI2 and TXB2 release and renal TXB2 increased 2–3 fold at 1 h post-burn but returned to the sham level at 2 h post-burn. By 24 h post-burn the vasodilator eicosanoids were increased in both the splanchnic and renal vascular beds. These data show that decreased renal and splanchnic blood flow was associated with increased endogenous release of the potent vasoconstrictor TXB2. By 2 h post-burn, renal and splanchnic blood flow began returning toward the sham level as endogenous release of TXB2 from both organs fell to sham levels. These data suggest that increased endogenous release of TXB2 may contribute to the short-term decrease in renal and splanchnic blood flow in the immediate post-burn period and thus may contribute to ischemia of both vascular beds.  相似文献   

19.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

20.
The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique or by the tracer-dilution method, both at rest and during moderate and intense exercise (P > 0. 05). It is concluded that, during exercise in humans, determination of hepatic glucose production can be performed equally well with the two techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号