首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

2.
NaCl stimulated the adenylate cyclase activities of human and rabbit platelet particulate fractions prepared in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetate, but inhibited the activities of particulate fractions proteolysed by endogenous Ca2+-activated protease or treatment with alpha-chymotrypsin. Studies with other monovalent cations showed that LiCl had weak effects similar to those of NaCl, whereas KCl inhibited the enzyme in both proteolysed and non-proteolysed preparations. The results suggest that NaCl exerts stimulatory and inhibitory effects through different sites. NaCl potentiated and proteolysis greatly reduced the inhibition of platelet adenylate cyclase by 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (platelet-activating factor).  相似文献   

3.
4.
In vitro incubation of Ehrlich ascites tumor cells in the presence of norepinephrine induced desensitization of adenylate cyclase to the later norepinephrine stimulation. Such a desensitization was not accompanied by a decrease in the number of receptor sites. Formation of actin filaments from actin monomers was not changed in the desensitized cells, whereas polymerization of tubulin was significantly increased. The increase in the polymerization was dependent on the concentration of norepinephrine.  相似文献   

5.
Basal adenylate cyclase activity in rat lung homogenate was low prenatally but increased several-fold after birth and remained elevated to maturity. The results also demostrate the appearance of some factors(s) in the lung cytoplasm at a certain age which markedly activated adenylate cyclase. During late gestation and early neonatal life, when the cytoplasmic factor(s) was low or absent, basal adenylate cyclase activity was low and norepinephrine and NaF produced maximum activation of the enzyme. However, when the cytoplasmic factor(s) appeared in the adult lungs, basal adenylate cyclase activity was elevated and both norepinephrine and NaF produced little or no activation of the enzyme. These data suggest a role for the cytoplasmic factor(s) in regulating rat lung adenylate cyclase.The cytoplasmic factor(s) appeared to be a protein since it was inactivated by trypsin digestion and by heating to 75°C. Activation of adenylate cyclase was not due to small ions or other low molecular weight components of the cytoplasm as dialysis of the supernatant did not alter its activation of adenylate cyclase. The cytoplasmic factor(s) did not appear to be either GTP or calcium-dependent regulator of cyclic AMP phosphodiesterase as these did not activate the rat lung adenylate cyclase.  相似文献   

6.
Adenylate cyclase activity of the homogenate of Ehrlich ascites tumor cells pretreated with catecholamine at 37°C was not stimulated by the addition of the same catecholamine, whereas that of the cells without the pretreatment was stimulated. Such a desensitization was induced hardly at all when the pretreatment was performed at low temperature. The desensitization of adenylate cyclase activity to catecholamine stimulation was prevented by pretreatment. The effect of cholchine was dependent on the period of the treatment and concentration of colchicine. Vinblastine had a similar effect, whereas cytochalasin B was without effect. Thus, involvement of microtubules was suggested in the desensitization of the membrane-associated enzyme to external sitmulation.  相似文献   

7.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

8.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

9.
The membrane-bound adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) of isolated rat adrenal cortex cells can be rendered soluble using 0.02 M Lubrol 12A9. The solubilized enzyme can be filtered through Millipore filters with pores 0.22 μm in diameter. Using gel filtration, on Sephadex G-200, adenylate cyclase activity was eluted with a distribution coefficient of 0.139, whereas on Sephadex G-100 the activity was eluted in the excluded volume. Half-maximum activation of the postulated guanyl nucleotide regulator site of adenylate was achieved with 5′-guanylyl-imidodiphosphate at a concentration of 1 · 10?6 M. In contrast, however, using intact isolated rat adrenal cortex cells the guanyl nucleotide regulator site could not be stimulated by 5′-guanylyl-imidodiphosphate.  相似文献   

10.
The reversibility of adenylate cyclase activation induced by vasopressin was studied by reducing the concentration of active peptide in contact with kidney medullo-papillary membranes. Reversibility of hormonal activation was only partial. The use of antagonists failed to demonstrate the reversibility of an adenylate cyclase activation induced by high affinity agonists. When antagonist was added after the agonist to membranes, a non-competitive inhibitio was apparent. Active peptide was also eliminated from the incubation medium by treatment with agents capable of reducing the disulfide bridge of the hormonal molecule. Direct effects of reducers on adenylate cyclase activity were measured on enzyme activation induced by peptides lacking a disulfide bridge. There was no apparent correlation between the abilities of different reducers to inactivate free peptide in solution and their abilities to promote the reversibility of hormone-induced enzyme activation. Upon the addition of dithiothreitol, enzyme activity could be lowered to baseal value and adenylate cyclase was again fully stimulatable. However, when dithiothreitol addition to stimulated enzyme was combined with a 60-fold dilutionof the incubation medium, no reversibility of hormonal activation occurred. These results illustrate that the processes involved in adenylate cyclase activation are only partially reversible.  相似文献   

11.
Adenosine-cyclic AMP relationships have been studied in pig mesenteric lymph node lymphocytes. The early 2–3-fold increase in cyclic AMP accumulation elicited by adenosine and 2-chloroadenosine, an adenosine deaminase-resistant analogue, could not be correlated to similar effects on the adenylate cyclase activity of disrupted cell preparations, but rather to the competitive inhibition of the low Km (0.17 μM) cyclic AMP phosphodiesterase. The existence of adenosine receptors coupled to lymphocyte adenylate cyclase, which had been proposed by several authors, could not be confirmed by this study. Adenosine-cyclic AMP relationships do not appear to be involved in concanavalin A stimulation of pig lymphocytes.  相似文献   

12.
The binding of [3H]prostaglandin E1 to membranes of clones of normal rat kidney fibroblasts (NRK cells) has been measured. Cell lines that responded to prostaglandin E1, such as NRK and NRK transformed with Schmitt-Ruppin strain of Rous sarcoma virus (SR-NRK cells), have a high affinity prostaglandin E1 binding site. Murine-sarcoma-virus-transformed lines of NRK cells are unresponsive to prostaglandin E1 and have reduced prostaglandin E1 binding. Exposure of cells to prostaglandin E1 results both in decreases prostaglandin E1 responsiveness and reduced prostaglandin E1 binding.Activation of adenylate cyclase is correlated to binding of prostaglandin E1 to receptors in both NRK and SR-NRK cell membranes. Mathematical models suggest that GTP decreases the affinity of hormone for its receptor while increasing the catalytic efficiency of adenylate cyclase, and that aggregates of occupied receptors may play an important role in the activation of adenylate cyclase.  相似文献   

13.
We have investigated the effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (1-octadecyl-2-acetyl-G-3-PC), using particulate fractions from human and rabbit platelets that had been frozen and thawed in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate to prevent Ca2+-dependent proteolysis. When 10 μM GTP was present, 100 mM NaCl stimulated the activity of the rabbit enzyme 5.6-fold and that of the human enzyme 2.2-fold. Under these conditions, maximum inhibitions of 90% and 64% were obtained on addition of 100 nM 1-octadecyl-2-acetyl-G-3-PC to rabbit and human preparations, respectively. These inhibitions resulted partly from an NaCl-independent inhibition of basal enzyme activity and partly from reversal of the stimulatory effect of NaCl. The relative abilities of the chlorides of different monovalent cations to enhance inhibition of rabbit platelet adenylate cyclase were: NaCl >LiCl >KCl >choline chloride. NaCl also increased the concentrations of 1-octadecyl-2-acetyl-G-3-PC required for half-maximal inhibition of adenylate cyclase but this action of NaCl did not correlate with its stimulatory effect on enzyme activity. After particulate fractions from platelets of either species were washed, 10 μM GTP inhibited basal adenylate cyclase activity in the absence of NaCl but stimulated the enzyme in the presence of NaCl. Inhibition of adenylate cyclase by 1-octadecyl-2-acetyl-G-3-PC was then either enhanced by GTP (rabbit material) or completely dependent on added GTP (human material). Stimulation of the activity of the washed human preparations by NaCl required GTP, but concentrations lower than required for potentiation of the inhibitory effect of 1-octadecyl-2-acetyl-G-3-PC by NaCl were effective.  相似文献   

14.
A 100 000 × g soluble, supernatant fraction obtained from the hemolysate of rat reticulocytes was studied for its effect upon catecholamine-sensitive adenylate cyclase activity in reticulocyte membranes. The supernatant material, devoid of adenylate cyclase activity itself, amplified isoproterenol-dependent activity in responsive membranes and was an essential requirement for the expression of hormone sensitivity in membranes rendered unresponsive to isoproterenol alone. The increment in catecholamine-associated activity conferred upon reticulocyte membranes by the supernatant material was β-adrenergic because it did not affect basal or fluoride-related activity and was completely inhibited by propranolol. Guanine nucleotides were present in the supernatant but could account for only a fraction of the total activity because the supernatant was able to cause greater stimulation than maximal concentrations of GTP and when specified concentrations of exogenous GTP were compared with equivalent nucleotide concentrations in the supernatant, the supernatant always led to greater activity. The supernatant was resolved into protein- and nucleotide-containing components by ion-exchange chromatography. Each component was approximately one-half as active in amplifying catecholamine-dependent adenylate cyclase as the unresolved, crude supernatant material. The activity eluted in the first peak of the DEAE chromatogram was resistant to alkaline phosphatase, sensitive to trypsin, not dialyzable and contained no detectable concentrations of GTP or GDP. In contrast, the activity eluted in the second peak of the DEAE chromatogram was sensitive to alkaline phosphatase, resistant to trypsin, completely dialyzable and contained both GTP (30 μM) and GDP (10 μM) in significant concentrations. Neither the crude supernatant not its two active components affected the binding of [125I]-iodohydroxybenzylpindolol to reticulocyte membranes. These observations establish in rat reticulocytes the presence of protein and guanine nucleotide constituents which have independent influences upon the catecholamine-responsive adenylate cyclase of reticulocyte membranes.  相似文献   

15.
We have investigated the effect of the b isoform of S-100 proteins on adenylate cyclase activity of rat skeletal muscle. S-100b inhibits the adenylate cyclase activity in the presence of Mg2+ (5.0–50 mM), while it activates the same enzyme in the presence of Ca2+ (0.1–1.0 mM) dose-dependently in both cases. S-100b counteracts the stimulatory effect of NaF on adenylate cyclase in the presence of Mg2+ and the inhibitory effect of RMI 12330 A in the presence of Ca2+.  相似文献   

16.
The adult rat lung supernatant contains some factors which markedly enhance adenylate cyclase activity in membranes (Nijjar, M.S. (1979) Biochim. Biophys. Acta 584, 43–50). These factors were separated into two less active components (peaks 1 and 2) by DEAE-cellulose chromatography. However, their recombination restored the full activation of adenylate cyclase. Further purification and characterization of these factors revealed that the activation in peak 1 contained two proteins of low (14 500) and high (65 000) molecular weight whereas the activator in peak 2 contained only one protein of 65 000. The kinetics of adenylate cyclase activation revealed that both the Km and V values were affected. The data also demonstrate that calmodulin was not involved in the cytoplasmic activation of adenylate cyclase in rat lungs.  相似文献   

17.
Gangliosides inhibit basal, thyrotropin-induced and fluoride-induced adenylate cyclase activity of human thyroid membranes in physiological conditions. In contrast neutral glycolipids, phospholipids and neuraminic acid containing oligosaccharides show no effect. The efficacy of inhibition is more dependent upon the position of the sialic acid residues than upon their absolute number. In general gangliosides with disialyl groups are more inhibitory than those with single sialyl moieties. The inhibitory effects of the individual gangliosides on the two modes of stimulation are parallel. This parallelism suggests that the inhibitory effect is located at the postreceptor level and that the gangliosides interact directly with the adenylate cyclase system. A possible role of thyroid membrane gangliosides as suppressive cofactors of adenylate cyclase is discussed in relation to recent findings of stimulating anti-ganglioside antibodies in Graves' disease.  相似文献   

18.
Molybdate activation of rat liver plasma membrane adenylate cyclase has been examined and compared with the effect of glucagon, Gpp(NG)p and fluoride. Glucagon does not stimulate the detergent solubilized enzyme, though molybdate, fluoride, and Gpp(NH)p are effective in this regard. The stimulatory effects of either fluoride or molybdate are additive with those of GTP and do not require guanyl nucleotide to evoke their activation. Neither fluoride nor molybdate can substitute for GTP when glucagon is the activator of rat liver adenylate cyclase. The stimulatory effects of either ion on adenylate cyclase are additive with that produced by glucagon. Activation of adenylate cyclase by either molybdate or fluoride occurs by a mechanism distinct from that of glucagon or guanyl nucleotide. The data presented here suggest that fluoride and molybdate may act via a similar mechanism of action. Neither ion displays a lag in activation of adenylate cyclase. The pH profiles of fluoride and molybdate-stimulated adenylate cyclase activity are similar, and distinct from guanyl nucleotide-stimulated activity. Cholera toxin treatment of adenylate cyclase blocks fluoride and molybdate stimulation of the enzyme to the same extent, while enhancing the activation obtained with GTP and hormones.  相似文献   

19.
The inhibition of rat liver adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Pb2+ could be separated into an irreversible and a reversible component.Evidence was obtained that both types of inhibition were due to free Pb2+, rather than Pb/ATP, and that Pb2+ did not act via the site wherein Mg2+ and Mn2+ activate the cyclase.Guanine nucleotides strongly counteracted the reversible inhibition of cyclase by Pb2+, providing onother example of guanine nucleotide effects on adenylate cyclase function.It is suggested that the Pb2+-inhibited cyclase may be of value in the study of guanine nucleotide-cyclase interactions.  相似文献   

20.
In pigeon erythrocyte membrane, the β-adrenergic receptor and the enzyme adenylate cyclase can be uncoupled in two different ways depending on the type of drug used.Cationic drugs: chlorpromazine, methochlorpromazine, tetracaine, n-octylamine and a neutral alcohol, octanol, abolished alprenolol receptor binding ability and in the same range of concentration of the drug, sensitized adenylate cyclase to fluoride or Gpp(NH)p stimulation. Anionic drugs: di- and trinitrophenols, indomethacin and octanoic acid did not affect the total number of β-adrenergic receptor sites and, with the exception of trinitrophenol, did not change the association constant for alprenolol but they abolished the stimulation of adenylate cyclase by isoproterenol, fluoride or Gpp(NH)p. These modifications of the adenylate cyclase system occurred in a range of drug concentration where cell shape and protection against hemolysis were also affected.As chemical composition varies widely from one drug to another, it is suggested that these effects are largely nonspecific and mediated by the lipid bilayer. They are probably related to a preferential sidedness of action of the drugs in the lipid bilayer, displaying the role of an asymmetric control of the adenylate cyclase system in the membrane by the two halves of this bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号