首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of theophylline on poly(ADP-ribosyl)ation was investigated. The poly(ADP-ribose) synthetase activity in vitro was markedly reduced in the liver nuclei prepared from theophylline-treated chick embryo. This reduction was not due to the enzyme inhibition by theophylline contamination in the nuclear fraction. The hydroxyapatite column chromatographic analysis of [3H]adenosine-labelled poly(ADP-ribose)molecules formed in vivo revealed that the in vivo formation of poly(ADP-ribose)molecules was also decreased by theophylline administration. The theophylline-induced reduction of poly(ADP-ribose) synthesis was not due to either low NAD levels or to a decrease in the chain length of the poly(ADP-ribose) molecule, rather this reduction was derived from a decrease in the number of poly(ADP-ribose) molecule. Possible mechanisms related to reduction of poly(ADP-ribose) synthesis in vivo are discussed.  相似文献   

2.
The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.  相似文献   

3.
The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.  相似文献   

4.
Poly(ADP-ribose) is routinely detected by the use of radioactive polymers formed from labeled substrates. In this report a simple and time-saving method for the biotinylation and the detection of poly(ADP-ribose) on blots is described. The polymer modified by light-induced reaction with photobiotin was colorimetrically detected and quantified, using streptavidine-alkaline phosphatase conjugates. The separation of poly(ADP-ribose) chains on polyacrylamide gels was not affected by the biotinylation of the polymers. When biotinylated poly(ADP-ribose) was used to detect the poly(ADP-ribose) binding capability of proteins in ligand blots, the results were comparable to those obtained with poly([32P]ADP-ribose). Experiments with histones and rat liver nuclear proteins demonstrate that in studies on poly(ADP-ribose)-protein interaction, this method is applicable to the detection of poly(ADP-ribose) binding proteins.  相似文献   

5.
Glucocorticoid treatment produced changes in poly(ADP-ribose) synthetase activities in subcellular fractions from chick embryo liver. The reduction of poly(ADP-ribose) synthetase activity in the nuclear fraction with this hormone treatment was accompanied by a concomitant increase in the postnuclear enzyme activity, particularly in the microsomal fraction. The reduced enzyme activities found in the nuclei were restored within a few days after the injection of 10 μg hydrocortisone into the fertilized egg incubated for 11 days. However, these restorations were not observed during the period tested, when over 100 μg of the hormone was given. The changes in the poly(ADP-ribose) formation by glucocorticoid treatment were due to alteration of a number of acceptor sites, but not to chain elongation, for the molecule. With regard to decrease in the nuclear poly(ADP-ribose) synthetase activity and increase in the postnuclear enzyme activity, possible mechanisms by which glucocorticoid induces these changes are discussed.  相似文献   

6.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution.  相似文献   

7.
To analyze the temporal relationship of poly(adenosine diphosphate [ADP]-ribosylation) signal with DNA replication and cell divisions, the effect of 3 aminobenzamide (3ABA), an inhibitor of the poly(ADP-ribose)synthetase, was determined in vivo during the first cleavage division of sea urchins. The incorporation of 3H-thymidine into DNA was monitored and cleavage division was examined by light microscopy. The poly(ADP-ribose) neosynthesized on CS histone variants was measured by labeling with 3H-adenosine during the two initial embryonic cell cycles and the inhibitory effect of 3ABA on this poly(ADP-ribosylation) was determined. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) de novo during the initial cell cycles of embryonic development. The synthesis of poly(ADP-ribose) is decreased but not abolished by 20 mM of 3ABA. The incubation of zygotes in 3ABA at the entrance into S1 phase decreased 3H-thymidine incorporation into DNA in phase S2, while S1 was unaltered. Alternatively, when the same treatment was applied to zygotes at the exit of S1 phase, a block of the first cleavage division and a retardation of S2 phase were observed. The inhibitory effect of 3ABA on both DNA replication and cell division was totally reversible by a release of the zygotes from this inhibition. Taking together these observations it may be concluded that the poly(ADP-ribosylation) signals related to embryonic DNA replication are not contemporaneous with S phase progression but are a requirement before its initiation. These results also indicate that a poly(ADP-ribosylation) signal is required for cell division; such signal is temporally different from that related to S phase initiation and occurs at the exit of S phase. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Effects of deuterium oxide (D2O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of gamma rays. Growth of irradiated and unirradiated cells was inhibited by 45% D2O but not by 3-aminobenzamide at 10 mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. The D2O did not inhibit the radiation-induced increase in poly(ADP-ribose) synthesis as measured by the incorporation of [14C]NAD into the acid insoluble fraction, contrary to 3-aminobenzamide. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of gamma rays. Possible mechanisms underlying the inhibition are discussed.  相似文献   

9.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme present in most eukaryotes and has been involved in processes such as DNA repair and gene expression. The poly(ADP-ribose) polymer (PAR) is mainly catabolised by poly(ADP-ribose) glycohydrolase. Here, we describe the cloning and characterisation of a PARP from Trypanosoma cruzi (TcPARP). The recombinant enzyme (Mr=65) required DNA for catalytic activity and it was strongly enhanced by nicked DNA. Histones purified from T. cruzi increased TcPARP activity and the covalent attachment of [32P]ADP-ribose moieties to histones was demonstrated. TcPARP required no magnesium or any other metal ion cofactor for its activity. The enzyme was inhibited by 3-aminobenzamide, nicotinamide, theophylline and thymidine but not by menadione. We demonstrated an automodification reaction of TcPARP, and that the removal of attached PAR from this protein resulted in an increase of its activity. The enzyme was expressed in all parasite stages (amastigotes, epimastigotes and trypomastigotes). When T. cruzi epimastigotes were exposed to DNA-damaging agents such as hydrogen peroxide or beta-lapachone, PAR drastically increased in the nucleus, thus confirming PAR synthesis in vivo and suggesting a physiological role for PARP in trypanosomatid DNA repair signalling.  相似文献   

10.
《Free radical research》2013,47(4-6):355-363
Quinones may be toxic by a number of mechanisms. including arylation and oxidative stress caused by redox cycling. Using isolated hepatocytes, we have studied the cytotoxicity of four quinones. with differing abilities to arylate cellular nucleophiles and redox cycle. in relation to their effects on cellular pyridine nucleotides. High concentrations of menadione (redox cycles and arylates). 2-hydroxy-1,4-naphthoquinone (neither arylates nor redox cycles via a one electron reduction) 2.3-dimethoxy-1.4-naphthoquinone (a pure redox cycler) and p-benzoquinone (a pure arylator) caused an initial decrease in NAD+ and loss of viability, which was not prevented by 3-aminobenzamide. an inhibitor of poly(ADP-ribose)polymerase. In contrast. 3-aminobenzamide inhibited the loss of NAD' and viability caused by dimethyl sulphate so implicating poly(ADP-ribose)polymerase in its toxicity but not that of the quinones. Non-toxic concentrations of menadione. 2.3-dimethoxy-1.4-naphthoquinone and 2-hydroxy-1.4-naphthoquinone all caused markedly similar changes in cellular pyridine nucleotides. An initial decrease in NAD+ was accompanied by a small. transient increase in NADP+ and followed by a larger. prolonged increase in NADPH and total NADP+ + NADPH. Nucleotide changes were not observed with non-toxic concentrations of p-benzoquinone. Our findings suggest that a primary event in the response of the cell to redox cycling quinones is to bring about an interconversion of pyridine nucleotides. in an attempt to combat the effects of oxidative stress  相似文献   

11.
In bronchial asthma, eosinophils are upregulated and their survival is suggested to be prolonged by the action of some cytokines such as Interleukin (IL)-3, IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF). We find here that the survival of eosinophils in the peripheral blood of patients with asthma is correlated with the serum levels of IL-3 but not of IL-5 and GM-CSF. Interestingly, theophylline is revealed to induce apoptosis of the prolonged survival eosinophils by IL-3, as judged by morphological changes and nucleosomal DNA fragmentation. During the apoptosis, caspase-3 in eosinophils stimulated by IL-3 is activated by theophylline. The substrate of caspase-3, poly (ADP-ribose) polymerase (PARP), is cleaved in the eosinophils after theophylline treatment. These results suggest that theophylline is able to induce apoptosis of the IL-3 activated eosinophils in patients with bronchial asthma, and that its clinical effectiveness may be due to the reduction of inflammatory cells in the airway.  相似文献   

12.
Unscheduled DNA synthesis has been measured in human fibroblasts under conditons of reduced rates of conversion of NAD to poly(ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of UV induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with UV or N-methyl-N′-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.  相似文献   

13.
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1–/– MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.  相似文献   

14.
The possible involvement of poly(ADP-ribose) polymerase [PARP; E.C. 2.4.2.30] in the adaptive response to low-g conditions was studied in cultured adult rat hepatocytes exposed to simulated microgravity produced by the random positioning machine (RPM-3D-clinostat). Four different poly(ADP-ribose) polymerases (PARPs) have been identified recently. The best-studied member of this family is PARP-1, a highly conserved, multimodular 113 kDa protein. In multicellular organisms PARPs catalyze poly(ADP-ribose) synthesis from NAD+ to a number of structural and catalytic proteins. Moreover, PARP-1 can control its protein and DNA interactions by catalyzing its automodification with poly(ADP-ribose) molecules that can include up to 200 ADP-ribose residues and several branching points; by these polymers, PARP-1 may nocovalently interact with other proteins and alter their functions. PARP-1 binds to DNA and is activated by free ends interacting with several other DNA damage checkpoint proteins. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions. Poly(ADP-ribosyl)ation plays a central role in genome stability and is involved in DNA replication and repair, gene expression, cell differentiation and transformation. We have shown that a loss of PARP-1 activity is a critical event in the early molecular steps of the hepatocarcinogenesis process. Moreover, a prompt increase in this enzymatic activity is linked not only to the presence of DNA free ends but is linked also to the start of DNA synthesis. More recently, we have reported that PARP-1 is involved in hormone-mediated gene expression in vitro and in vivo during rat liver regeneration.  相似文献   

15.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

16.
(3H)poly(ADP-ribose) synthesized from nuclei by incubation with (3H)NAD was released from protein by alkaline treatment and electrophoresed in dodecyl sulfate gels. Individual polymers up to at least 33 units were completely separated according to their chain length. Size distribution was visualized by fluorography of the gels, and quantified by radioactivity determination of sliced gels The method could be applied to crude nuclear extracts. It showed that nuclei of Ehrlich ascites tumor cells produced a poly(ADP-ribose) pattern distinctly different from that of rat liver nuclei.  相似文献   

17.
A selection strategy to obtain cells deficient in poly(ADP-ribose) polymerase was developed based on the fact that treatment with high levels of N-methyl-N'-nitro-N-nitrosoguanidine results in sufficient activation of poly(ADP-ribose) polymerase to cause NAD and ATP depletion leading to cessation of all energy-dependent processes and rapid cell death. In contrast, cells with low levels of poly(ADP-ribose) polymerase should not consume their NAD and might therefore be more likely to survive the DNA damage. Using this approach, we have cloned a number of cell lines containing 37-82% enzyme activity. The apparent decrease in poly(ADP-ribose) polymerase activity is not due to increases in NAD glycohydrolase, poly(ADP-ribose) glycohydrolase, or phosphodiesterase activities. Further characterization of the poly(ADP-ribose) polymerase-deficient cells indicates that they have prolonged generation times and increased rates of spontaneous sister chromatid exchanges.  相似文献   

18.
When the polyamines spermine, spermidine or putrescine at 1 or 2 mM were added to HeLa cell nuclei, there was a 1- to 3-fold differential stimulation of [3H]NAD incorporation into an H1 histone-poly(ADP-ribose) complex with little effect on total poly(ADP-ribose) synthesis. At higher polyamine levels, total polymer synthesis was inhibited, but the fraction of polymer associated with H1 was still differentially increased. A differential stimulation of complex synthesis was also produced by the addition of elevated levels of Mg2+ or Ca2+. These results were not due to an effect of these agents on recovery or turnover of the H1-poly(ADP-ribose) complex but apparently are related to the chromatin condensing action of these agents since enhanced formation of the H1-poly(ADP-ribose) complex and of chromatin aggregation was closely correlated.  相似文献   

19.
We have studied the synthesis of poly(ADP-ribose) by nuclei isolated from Xenopuslaevis embryos at different stages of development. Determination of the total chain length of poly(ADP-ribose) molecules by hydroxylapatite column chromatography generally gave higher values than when the radioactive portions of these molecules, synthesized invitro, were measured by poly(ethyleneimine)-cellulose thin layer chromatography, after snake venom phosphodiesterase digestion. The results show that most of the poly(ADP-ribose) synthesized invitro is a covalent elongation of molecules previously initiated invivo.  相似文献   

20.
Oxygen enhances in vivo myocardial synthesis of poly(ADP-ribose)   总被引:1,自引:0,他引:1  
In vivo synthesis of poly(ADP-ribose) is demonstrated in cultured chick embryo heart cells. Cells grown with (14C) ribose incorporate 28 – 31% more radioactivity into poly(ADP-ribose) in 20% O2 (in which they divide more slowly) than in 5% O2. Reaction product was identified as poly(ADP-ribose) by its insensitivity to various enzymes and by its digestion with snake venom phosphodiesterase to phosphoribosyl-AMP and AMP. Poly(ADP-ribose) glycohydrolase activity was similar in 20% and 5% O2. Thus, both poly(ADP-ribose) polymerase activity (shown in an earlier study) and poly(ADP-ribose) increase in cells growing more slowly in 20% vs 5% O2. These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart cell division by O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号