首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic GMP-dependent protein kinase from bovine lung and cyclic AMP-dependent protein kinase from bovine heart are inactivated by Nα-tosyl-L-lysine chloromethylketone (TLCK) in the presence of cyclic GMP and cyclic AMP, respectively. The inactivation of both protein kinases is pseudo-first order, suggesting the rate limiting step is beyond the binding of TLCK. Cyclic GMP-dependent protein kinase is inactivated less than 14 as rapidly as cyclic AMP-dependent protein kinase, although it shows a higher apparent affinity for TLCK. Cyclic AMP stimulated the rate of inactivation of cyclic AMP-dependent protein kinase 10-fold but cyclic GMP stimulated the rate of inactivation of cyclic GMP-dependent protein kinase only 1.5-fold. The rate of inactivation of cyclic GMP-dependent protein kinase by TLCK is sufficiently rapid (half-time of about 30 min at 37°C with 2 mM TLCK) to account for the effects of TLCK on cell growth observed by others.  相似文献   

2.
Calmodulin purified from bovine brain markedly stimulated cyclic GMP-dependent protein kinase from pig lung in the presence of cyclic GMP. This stimulation by calmodulin did not require Ca2+ and was dose-dependent up to optimal amounts, but the extent of stimulation decreased at concentrations over the optimal condition. The concentrations of cyclic GMP and cyclic AMP producing half-maximal stimulation were 4.5 × 10?8 M and 5.0 × 10?6 M respectively, under optimal conditions. Calmodulin increased maximum velocity without altering the Km for ATP. These effects of calmodulin on cyclic GMP-dependent protein kinase were similar to those of the stimulatory modulator described by Kuo and Kuo (J. Biol. Chem. 251, 4283–4286, 1976). Ouf findings indicate that calmodulin regulates enzyme activity both Ca2+-dependently and independently.  相似文献   

3.
The level of cyclic GMP-dependent protein kinase in the nucleus of rat liver was shown to increase 80% at 3 hr following partial hepatectomy while cyclic AMP-binding activity decreased 28%. Subnuclear fractionation demonstrated that the increase in cyclic GMP-dependent protein kinase was localized to the nucleolus and nucleoplasm, with no change in the extranucleolar particulate material. Cyclic AMP-binding activity was decreased in all subnuclear fractions under these conditions. At 16 hr following partial hepatectomy, the level of cyclic GMP-dependent protein kinase was not changed in the nucleolus but was significantly increased in the nucleoplasm, while cyclic AMP-binding activity was slightly increased in the nucleolus and decreased in the nucleoplasm.  相似文献   

4.
Endogenous proteins which could serve as substrates for cyclic AMP-dependent protein kinase in vitro were measured in cytosolic fractions at four stages of development. A peak of cyclic AMP-dependent phosphorylation occurred at the slug stage, coincident with the appearance of cyclic AMP-dependent protein kinase. After partial purification of the slug-stage extracts by DE-52 cellulose and Sephacryl S-300 chromatography, cyclic AMP dependency of six proteins was observed. The apparent subunit molecular weights of the proteins were greater than 200,000, 110,000, 107,000, 91,000, 75,000 and 69,000. Upon further purification of the cyclic AMP-dependent protein kinase by chromatofocusing, the endogenous substrates were separated from the enzyme. In addition, the enzyme separated into catalytic and regulatory subunits. If the purified catalytic subunit was added to heated S300 fractions, proteins with apparent molecular weights of 91,000 and 107,000 were specificity phosphorylated. The results show the stage-dependent appearance of a cyclic AMP-dependent protein kinase and point out several in vitro substrates for the enzyme.  相似文献   

5.
A novel method for rapidly determining the amount and degree of association-dissociation of the Type I and Type II cAMP-dependent protein kinases has been developed and validated. Antibodies directed against the regulatory subunits of Type I and Type II cAMP-dependent protein kinases were used. The antibodies formed complexes with holoenzymes and regulatory subunits which were precipitated by goat anti-rabbit IgG (immunoglobulin G). These complexes bound [3H]cAMP with an apparent Kb of 20 nM for protein kinase I and 80 nM for protein kinase II. Immunoprecipitated protein kinases I and II were catalytically active when incubated with cAMP, [gamma-32P]ATP, and histone H2B. When mixtures of the two kinase isoenzymes or cytosol were incubated with various amounts of [3H]cAMP and the isoenzymes were separated by precipitation with antisera specific for each isoenzyme, the amount of [3H]cAMP associated with immunoprecipitates was proportional to the concentration of [3H]cAMP. In contrast, the catalytic activity that was immunoprecipitated varied inversely with the concentration of [3H]cAMP, showing that the activation of protein kinase could be assessed by the disappearance of catalytic activity from the immunoprecipitates. In the absence of MgATP protein kinase I was activated by a 10-fold lower concentration of cAMP than protein kinase II. However, when MgATP was added to the incubation, there was no significant difference in the binding of [3H]cAMP or dissociation of catalytic subunits of the two isoenzymes. The anti-R antibodies were also used to rapidly quantitate the concentration of regulatory subunits and the relative ratio of protein kinases I and II in tissue cytosols.  相似文献   

6.
The morphological conversion of Chinese hamster ovary cells induced by treatment with dibutyryl cyclic AMP is correlated with increases in the intracellular level of cyclic AMP and the activation of cyclic AMP-dependent protein kinase. When cholera toxin is used to induce the increase in intracellular cyclic AMP, a similar correlation is obtained. Treatment of cells with prostaglandin E1, which causes a transient increase in intracellular cyclic AMP and a transient activation of protein kinase activity, does not result in the morphology change. From these studies we conclude that a stable activation of the cyclic AMP-dependent protein kinase, which results from an increase in intracellular cyclic AMP, induces the morphological conversion of Chinese hamster ovary cells through phosphorylation of one or more cellular components.  相似文献   

7.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

8.
Cyclic GMP-dependent protein kinase has been purified to apparent homogeneity from bovine adrenal cortex and its presence in the rat adrenal cortex has been demonstrated. Sucrose density sedimentation studies indicated that the Mr of the enzyme was 145,000. This protein was composed to two identical subunits each with Mr of 75,000. The enzyme molecule was asymmetric with a frictional coefficient of 1.54, Stokes radius of 53.5 Å and a sedimentation coefficient of 6.5. The enzyme self-phosphorylated and the stoichiometry of cyclic GMP binding was two molecules per holoenzyme. Calmodulin or troponin C markedly stimulated the apparent maximal velocity of cyclic GMP-dependent protein kinase without affecting its basal activity. This effect of protein modulators was independent of calcium. Sucrose density gradient studies indicated that the stimulatory effect of calmodulin was due to its interaction with histones. An interaction of calmodulin with the enzyme was not observed. The steroidogenic potential of cyclic GMP and its analogs correlated closely with their ability to stimulate cyclic GMP-dependent protein kinase; the order of potency for both activities was 8-bromocylic GMP > cyclic GMP > N2-monobutyryl cyclic GMP > N2, O2-dibutyryl cyclic GMP. In each case, calmodulin enhanced the cyclic GMP-dependent protein kinase activity for histone phosphorylation. These results indicate that although cyclic GMP is the primary regulator of cyclic GMP-dependent protein kinase, other modulator proteins such as calmodulin could act as additional regulators of the phosphorylation of substrate proteins. In addition, the demonstration of cyclic GMP-dependent protein kinase in rat adrenal glands, and the results with cyclic GMP and its analogs relating to their activation of protein kinase and steroidogenesis are consistant with the concept that cyclic GMP is one of the mediators of adrenal steroidogenesis.  相似文献   

9.
The stereospecific activation of protein kinase C   总被引:6,自引:0,他引:6  
Protein kinase C is synergistically activated by the presence of calcium, certain phospholipids and a diacylglycerol. The physiological activation of the enzyme appears to be determined by the availability of the diacylglycerol which is itself a product of (poly) phosphoinositol turnover. It is shown here that the diacylglycerol activation effect is stereospecific, with only the 1,2-sn-diglycerides being active. This demonstrates for the first time a stereospecific effector role for a membrane-bound lipid. Furthermore, this work strengthens the link forged between the highly potent and specific tumor promoters (such as the phorbol esters) and the diglycerides as activators of protein kinase C.  相似文献   

10.
A five-month-old Japanese boy was found to have marked glycogen accumulation only in the heart. A survey of enzymes revealed normal activities of phosphorylase, cyclic AMP-dependent protein kinase, acid maltase and amylo-1,6-glucosidase. However, the heart had capacity of activating neither rabbit muscle phosphorylase b nor endogenous phosphorylase b, which was converted to active form only when supplemented rabbit muscle phosphorylase kinase. In contrast to the heart, activities of phosphorylase kinase were found within normal levels in other organ tissues so far tested. These findings indicate that the present case of the cardiac glycogenosis is caused by deficiency of cardiac phosphorylase kinase.  相似文献   

11.
Polysphondylium pallidum is a cellular slime mold in which, unlike in Dictyostelium discoideum, cAMP is not the chemotactic agent. The occurrence of a cAMP-dependent protein kinase in D. discoideum was demonstrated earlier and we suggested that it may mediate the intracellular effects of cAMP on the development of the organism, particularly since an increase in the amount of the enzyme during development was noted. In D. discoideum cAMP plays a dual role insofar as it serves both as chemotactic agent and as second messenger; it was of interest therefore, to determine whether a cAMP-dependent protein kinase occurred in P. pallidum. We found a cAMP-dependent protein kinase in P. pallidum using Kemptide as substrate. The regulatory subunit of the enzyme has an apparent molecular weight of 41,000 and seems to be similar in its properties with that isolated earlier from D. discoideum. The cAMP-dependent protein kinase catalytic subunits from the two species are also similar. Furthermore, there is a developmentally regulated, parallel, two- to threefold increase in the two subunits of the cAMP-dependent protein kinase in P. pallidum. The increase occurs before aggregates are formed. These findings are compatible with a role of the intracellular cAMP and of the cAMP-dependent protein kinase in the development of P. pallidum.  相似文献   

12.
Tubulin was shown to be an endogenous substrate of the calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase [T. Yamauchi and H. Fujisawa (1983) Eur. J. Biochem.132, 15–21]. Serine and threonine were identified as the phosphate acceptor amino acids of tubulin. The Vmax of the phosphorylation of tubulin and the apparent Km value for tubulin of calmodulin-dependent protein kinase II were 89 nmol phosphate transferred min?1 mg kinase II?1 and 1.7 μm, respectively. The maximum 32P incorporation into tubulin was 0.18 mol Pi/mol α-tubulin and 0.13 mol Pi/mol β-tubulin. The phosphorylation of tubulin was decreased by the denaturation of tubulin. The phosphorylation of tubulin by kinase II did not affect the assembly of microtubules.  相似文献   

13.
Recently, we described the partial purification and characterization of a novel adrenocortical cyclic nucleotide-independent protein kinase, PK 380, that catalyzes the phosphorylation of an endogenous peptide (120,000 daltons) and a serine residue(s) of the α subunit (38,000 daltons) of the eucaryotic initiation factor eIF-2 (Y. Kuroda, W. C. Merrick, and R. K. Sharma, 1982, Arch. Biochem. Biophys.213, 271–275). In the present communication we describe the purification to apparent homogeneity and characterization of this protein kinase (SPK 380). As shown by sucrose density sedimentation, the native enzyme has a molecular weight of 356,000. The protein is composed of three identical subunits of Mr 120,000. Polyacrylamide-gel isoelectric focusing electrophoresis revealed a single peak with pI 4.5. SPK 380 self-phosphorylated a histidine residue(s) of its 120,000-dalton peptide. This reaction utilized the terminal phosphate of ATP; GTP was inactive. Divalent cations (5 mm Mn2+ or 10 mm Mg2+) were essential for optimum activity. Thiol reagents (N-ethylmaleimide, p-chloromercuriphenylsulfonic acid) inhibited the kinase, indicating a sulfhydryl-group requirement for enzyme activity.  相似文献   

14.
The purified Ca2+- and calmodulin-dependent protein kinase from rat brain, which has a M.W. of 120,000 by gel filtration analysis, showed a broad substrate specificity. In addition to myosin light chain from chicken gizzard, the enzyme phosphorylated myelin basic protein, casein and two endogenous substrates in a Ca2+- and calmodulin-dependent manner. In contrast, chicken gizzard myosin light chain kinase exclusively phosphorylated myosin light chain.  相似文献   

15.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

16.
When Ca2+ is added to abalone sperm (Haliotis rufescens) in Ca2+-free artificial seawater (CaFASW) to a final concentration of 9.6 mM a 4-fold elevation in sperm cAMP occurs within 15-30 sec. The methylxanthines, theophylline and 1-methyl-3-isobutylxanthine (MIX), also elevate sperm cAMP concentrations. In CaFASW, either compound causes up to a 3-fold increase in cAMP within 15-30 sec. MIX (150 microM), added to sperm in the presence of 9.6 mM Ca2+, elevates sperm cAMP 100-fold within 15-30 sec and also triggers the acrosome reaction (AR) in the same period. Under identical conditions theophylline (1.67 mM) is much less potent at elevating cAMP and inducing the AR. The effects of methylxanthines on cAMP of sperm incubated in the presence of Ca2+ appear to represent a potentiation by these compounds of the action of Ca2+. Neither compound induces the AR in the absence of Ca2+. All of the observed effects on sperm cAMP and the AR are dependent on Ca2+ and methylxanthine concentrations. Added cyclic nucleotides or their derivatives do not induce the AR in either the absence or presence of Ca2+. Experiments with isolated sperm heads and flagella indicate that the dramatic stimulatory response of sperm cAMP to Ca2+ plus MIX is present in the head region (acrosome, nucleus, midpiece) of the cell. The data suggest that the dramatic elevation of cAMP by MIX in the presence of Ca2+ may occur directly by an inhibition of phosphodiesterase activity and indirectly by an increase in cellular Ca2+. A strong temporal correlation between the cAMP elevation and the abalone AR exists, although cAMP elevation by itself does not act as the primary mediator of this exocytotic event.  相似文献   

17.
Glycogen synthase from skeletal muscle was phosphorylated by a Ca2+, calmodulin-dependent protein kinase from brain, with concomitant inactivation. About 0.7 mol phosphate/mol subunit was sufficient for a maximal inactivation of glycogen synthase. Further phosphorylation of the enzyme had no effect on the activity. The concentrations required to give half-maximal phosphorylation and inactivation of glycogen synthase were 1.1 and 0.5 microM for Ca2+, and 22 and 11 nM for calmodulin, respectively. The molar ratio of the subunit of the protein kinase to calmodulin was 2-3:1 for half-maximal phosphorylation and inactivation of glycogen synthase. The Km values for glycogen synthase and ATP were 3.6 and 114 microM, respectively, for phosphorylation. Phosphate was incorporated into sites Ia, Ib, and 2 on glycogen synthase, and site 2 was the most rapidly phosphorylated. These results indicate that the brain Ca2+, calmodulin-dependent protein kinase is probably involved in glycogen metabolism in the brain as a glycogen synthase kinase.  相似文献   

18.
The tissue and developmental distribution of the various myosin subunits has been examined in bovine cardiac muscle. Electrophoretic analysis shows that a myosin light chain found in fetal but not in adult ventricular myosin is very similar and possibly identical to the light chain found in fetal or adult atrial and adult Purkinje fiber myosins. This light chain comigrates on two-dimensional gels with the bovine skeletal muscle embryonic light chain. Thus, this protein appears to be expressed only at early developmental stages in some tissues (cardiac ventricles, skeletal muscle) but at all stages in others (cardiac atria). The heavy chains of these myosins have been examined by one- and two-dimensional polypeptide mapping. The ventricular and Purkinje fiber heavy chains are indistinguishable. They are, however, different from the heavy chain found in cultured skeletal muscle myotubes, in contrast to the situation concerning the embryonic/atrial light chain.  相似文献   

19.
Total protein kinase activity and the expression of the type I and type II cyclic adenosine 3′:5′-monophosphate-dependent protein kinases were studied in subcellular fractions of rat thymocytes and the effect of concanavalin A treatment on protein kinase activity was assessed. At a concentration of 100 μ/ml of concanavalin A a marked decline of total nuclear protein kinase activity occurred which lasted approximately 20 to 90 min. Concomitantly, a twofold increase of total protein kinase activity in the 900g supernatant fraction was observed which lasted from 5 to 30 min. Studies using the heat-stable protein kinase inhibitor revealed that the concanavalin A-mediated activity changes were primarily due to changes of cAMP-dependent protein kinase activity, whereas cAMP-independent protein kinase activity remained unchanged. Analysis of the type I and type II cAMP-dependent protein kinase isozyme pattern before and after concanavalin A treatment revealed a selective change of the relative expression of isozyme activities. Whereas type I protein kinase was the major nuclear isozyme before concanavalin A treatment, nuclear type II cAMP-dependent protein kinase increased markedly with a concomitant loss of type I isozyme expression. In the 900g supernatant fraction, containing primarily the type II isozyme in unstimulated cells, concanavalin A treatment caused an increase of the expression of the type I isozyme. The concanavalin A-mediated relative changes of cAMP-dependent protein kinase isozyme expression were confirmed by photoaffinity labeling of the regulatory subunits RI and RII before and after concanavalin A stimulation. The intracellular concanavalin A-mediated isozyme changes were time dependent, exhibiting maximal effects about 20 min after concanavalin A addition. These results indicate that selective regulation of intracellular cAMP-dependent protein kinase isozyme expression may be a mechanism related to isozyme-specific phosphorylation of specific intracellular substrates in concanavalin A-activated thymocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号