首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An arylamidase hydrolysing L-leucine-4-nitroanilide was extracted from rat skeletal muscle homogenate and furified by means of anion-exchange chromatography on DEAE-Sephadex A-50 followed by gel filtration on Sephadex G-150 and Sepharose 6B. The enzyme was isolated in the form of three different protein complexes that differ in molecular weight, kinetic data, and sensitivity to metal ions. As studied by SDS-gel electrophoresis and repeated gel chromatography on Sepharose 6B these forms are: 1. a stable monomer (A1) of Mr 122 000; 2. a stable dimer (A2) of Mr 244 000; and 3. a stable polymer (A3) of more than Mr 4·106. The arylamidase was optimally active at pH 7.3 and did not require metal ions. Treatment with 1,10-phenanthroline resulted in complete inactivation, the activity could be restored by the addition of manganous chloride. The sulphhydryl-blocking reagent 4-hydroxymercuribenzoate strongly inactivated the arylamidase, this inhibition could be reversed by the addition of 2-mercaptoethanol. Addition of phenylmethylsulfonyl fluoride had no effect on the enzyme activity. Furthermore, the influence of metal ions as well as the substrate specificity were investigated and compared for all three forms of arylamidase.  相似文献   

2.
3.
The effects of natural aliphatic polyamines on basal and hormone-stimulated protein phosphorylations in hepatocytes were studied. Cells isolated from adult rats were incubated in suspension with [32P]orthophosphate, in the absence or presence of polyamines at varying concentrations and for different times; hepatocytes were then exposed to various hormones for 10 min. Phosphoproteins contained in total cell lysates were analyzed by one- and two-dimensional gel electrophoresis and autoradiography. Spermine, the most effective amine, decreased the basal level of phosphorylation of proteins with 46, 34 and 22 kDa, and increased that of a 18 kDa protein. These effects, maximal with an external concentration of 7.5–10 mM, were detectable after a lag period of about 10 min and reached a plateau after 45 min. Prereatment of cells with the polyamine almost completely prevented stimulation of the phosphorylation of the 46 and 34 kDa proteins by insulin; in contrast, the effects of phenylephrine on the same proteins were only partly inhibited, whereas those of glucagon appeared largely unaffected. The major polyamine effect observed in intact cells (i.e., decreased phophorylation) could be reproduced in a cell-free system where no kinase activity persisted. Indeed, spermine added directly to cell extracts strongly accelerated dephosphorylation of the 46 kDa protein and also of the 61 kDa protein identified as pyruvate kinase; furthermore, restoration of the activity of this enzyme occurred concomitantly with dephosphorylation of the 61 kDa protein in the presence of spermine.  相似文献   

4.
The effect of purified calmodulin on the calcium-dependent phosphorylation of human erythrocyte membranes was studied. Under the conditions employed, only one major peak of phosphorylation was observed when solubilized membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this phosphorylated protein band was estimated to be 130 000 and in the presence of purified red blood cell calmodulin, the rate of phosphorylation of this band was increased. These data suggest that calmodulin activation of (Ca2+ + Mg2+)-ATPase could be a partial reflection of an increased rate of phosphorylation of the (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes.  相似文献   

5.
Human erythrocyte membranes contain a phosphoprotein phosphatase able to dephosphorylate membrane protein previously phosphorylated by the endogenous protein kinase.The level of dephosphorylation obtained after prolonged incubation is about one half of the phosphorylated residues.The characteristics of this enzyme are similar to those described for the cytoplasmic phosphoprotein phosphatase.In a membrane preparation the phosphorylation and dephosphorylation reactions can be repeated, at least twice, achieving similar levels of phosphate esterified or hydrolyzed.The coordination of these two enzyme systems might play a role in some of the functions attributed to the protein kinase system.  相似文献   

6.
Cytosol from rabbit heart and slow and fast skeletal muscles was fractionated using (NH4)2SO4 to yield three cytosolic protein fractions, viz., CPF-I (protein precipitated at 30% saturation), CPF-II (protein precipitated between 30 and 60% saturation), and cytosol supernatant (protein soluble at 60% saturation). The protein fractions were dialysed and tested for their effects on ATP-dependent, oxalate-supported Ca2+ uptake by sarcoplasmic reticulum from heart and slow and fast skeletal muscles. CPF-I from heart and slow muscle, but not from fast muscle, caused marked inhibition (up to 95%) of Ca2+ uptake by sarcoplasmic reticulum from heart and from slow and fast muscles. Neither unfractionated cytosol nor CPF-II or cytosol supernatant from any of the muscles altered the Ca2+ uptake activity of sarcoplasmic reticulum. Studies on the characteristics of inhibition of sarcoplasmic reticulum Ca2+ uptake by CPF-I (from heart and slow muscle) revealed the following: (a) Inhibition was concentration- and temperature-dependent (50% inhibition with approx. 80 to 100 μg CPF-I; seen only at temperatures above 20°C). (b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+. (c) Inhibition was uncompetitive with respect to ATP. (d) Sarcoplasmic reticulum washed following exposure to CPF-I showed reduced rates of Ca2+ uptake, indicating that inhibition results from an interaction of the inhibitor with the sarcoplasmic reticulum membrane. (e) Concomitant with the inhibition of Ca2+ uptake, CPF-I also inhibited the Ca2+-ATPase activity of sarcoplasmic reticulum. (f) Heat-treatment of CPF-I led to loss of inhibitor activity, whereas exposure to trypsin appeared to enhance its inhibitory effect. (g) Addition of CPF-I to Ca2+-preloaded sarcoplasmic reticulum vesicles did not promote Ca2+ release from the vesicles. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum Ca2+ pump in heart and slow skeletal muscle but not in fast skeletal muscle. The characteristics of the inhibitor and its apparently selective distribution suggest a potentially important role for it in the in vivo regulation of sarcoplasmic reticulum Ca2+ pump, and therefore in determining the duration of Ca2+ signal in slow-contracting muscle fibers.  相似文献   

7.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats.A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively.Dephosphorylation was stimulated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 μM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

8.
In canine cardiac sarcoplasmic reticulum, adenosine 3′,5′-monophosphate (cyclic AMP)-dependent protein kinase specifically phosphorylates two proteins, as seen by sodium dodecyl sulfate-slab gel electrophoresis and autoradiography. One protein has a molecular weight ranging between 22 000 and 24 000 daltons and has previously been identified and named phospholamban (Tada, M., Kirchberger, M.A. and Katz, A.M. (1975) J. Biol. Chem. 250, 2640–2647). The other protein that the 32P label incorporates into has a molecular weight of approximately 6000. Like the 22 000 dalton protein, the 6000 dalton protein has characteristic of phosphoester bonding. The time-dependent course of phosphorylation shows that initially the 32P label is incorporated more rapidly into the 22 000 dalton protein than the 6000 dalton protein, with both proteins reaching a steady-state level of phosphorylation after 10 min of incubation. When both protein kinase and cyclic AMP are eliminated from the incubation medium, both the 22 000 and the 6000 dalton protein are still phosphorylated but only to about a quarter of the activity found when cyclic AMP and protein kinase are included in the incubation mixture. The addition of phosphodiesterase completely eliminates the phosphorylation of both proteins. Treating the microsomes with trypsin prevents subsequent phosphorylation of either protein. Phosphorylating the microsomes first, then treating with trypsin, renders both the 22 000 and the 6000 dalton proteins resistant to even prolonged trypsin attack. Unphosphorylated, both proteins are solubilized by a very low concentration of deoxycholate. After phosphorylation the proteins cannot be solubilized by deoxycholate. Phosphorylation appears to alter greatly the physical properties of these proteins.Control experiments exclude the possibility that a lipid is being phosphorylated. After phosphorylation, the phosphorylated 22 000 dalton protein is separated from the 6000 dalton protein by proteolipid extraction. After first treating the microsomes with methanol, the 22 000 dalton protein is then soluble in acidified chloroform/methanol, while the 6000 dalton protein remains insoluble. The finding that both proteins have much different biochemical properties when phosphorylated than when not, may be relevant in how they regulate calcium transport in the sarcoplasmic reticulum.  相似文献   

9.
The synthesis of mouse erythrocyte membrane proteins by Friend erythroleukemia cells during dimethyl sulfoxide-induced differentiation was studied. Untreated and dimethyl sulfoxide-treated cells were incubated with l-[3H] leucine and the incorporation of radioactivity into total trichloroacetic acid-insoluble proteins and into proteins immunoprecipitated with a multivalent rabbit antibody to mouse erythrocyte membranes was determined. The immunoprecipitated membrane proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and radioactivity was detected by fluorography. The incorporation of l-[3H]leucine into total cell proteins was linear for 20 min in both untreated and treated cells. Exposure of the cells to dimethyl sulfoxide had an inhibitory effect on protein synthesis, with a significant decrease noted on the fourth day of treatment and a continued decline occurring until the seventh day when protein synthesis was 42% that of untreated cells. The synthesis of erythrocyte membrane proteins was 0.49% that of total cell proteins in untreated cells, was increased to 1.27% by the third day of treatment and remained at about 1% of total protein synthesis from the fourth to the seventh day. Untreated cells synthesized low levels of spectrin, bands 5 and 6 proteins. Treatment with dimethyl sulfoxide caused a staggered increase in synthesis of a number of erythrocyte membrane proteins. Spectrin synthesis increased 4-fold by the third day of treatment and declined thereafter. The synthesis of membrane proteins with electrophoretic mobilities similar to bands 3 and 4 was increased 2–3-fold by the fourth day, while bands 6 and 5 proteins attained maximal synthesis (4-fold) on the fifth and sixth days of treatment.  相似文献   

10.
Pyruvate, Pi dikinase in extracts of chloroplasts from mesophyll cells of Zea mays is inactivated by incubation with ADP plus ATP. This inactivation was associated with phosphorylation of a threonine residue on a 100 kDa polypeptide, the major polypeptide of the mesophyll chloroplast stroma, which was identified as the subunit of pyruvate, Pi dikinase. The phosphate originated from the beta-position of ADP as indicated by the labelling of the enzyme during inactivation in the presence of [beta-32P]ADP. During inactivation of the enzyme up to 1 mole of phosphate was incorporated per mole of pyruvate, Pi dikinase subunit inactivated. 32P label was lost from the protein during the Pi-dependent reactivation of pyruvate, Pi dikinase.  相似文献   

11.
Under certain physiological conditions a change i n the phosphorylation of histones in mouse epidermis in vivo was observed. Thus a single local application of the tumor-promoting mitogen 12-O-tetradecanoylphorbol-13-acetate caused a long-lasting increase of histone H1 phosphorylation which paralleled stimulated cell proliferation. Injection of the antimitotic β-adrenergic agonist isoproterenol led to a temporatory decrease in the rate of phosphorylation of H1, H2A and H2b immediately after cyclic AMP accumulation. A complete protein phosphorylation system could be demonstrated in mouse epidermis homogenates. The following enzyme activities were partially purified and characterized: a cyclic AMP-dependnet histone kinase; a ‘casein kinase’ and an ‘unsopecific’ protein kinase; a histone-specific protein phosphatase; and two ‘unspecific’ phosphoprotein phosphatases. In addition, a stimulatory effect of cyclic GPM on histone phosphorylation was observed. The enzymes were found to be predominantly localized in the 105 000 × g supernatant, but a small proportion of protein kinase and phosphatase activity could be regularly demonstrated in cell nuclei.  相似文献   

12.
13.
Easily solubilized carotenoid-containing proteins have been found in aqueous extracts from three genera of cyanobacteria. The three proteins have been purified, and the absorption spectra have been determined to be virtually identical with absorption maxima at 495 and 465 nm. During the purification the orange protein spontaneously changed to a red protein with a single, broad absorption maximum at 505 nm. The orange protein showed a molecular weight of 47 000 on gel filtration while that of the red protein was 26 700. Sodium dodecyl sulfate polacrylamide gel electrophoresis indicated a single polypeptide of Mr 16 000 in both the red and orange forms, but this method removed the chromophore from the proteins. The main carotenoid component of the complex was determined to be 3′-hydroxy-4-keto-ββ-carotenoid or 3′-hydroxyechinenone. The number of carotenoid molecules per molecule of orange protein of molecular weight 47 000 was between 20 and 40. The stoichiometry of carotenoid to protein seemed reasonably constant.  相似文献   

14.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

15.
Methods are presented for the complete removal of dodecyl sulfate from proteins. Themethods utilize the extraction of dodecyl sulfate anions as ion pairs with triethylammonium or tributylammonium cations into an organic solvent. The protein is insoluble in the organic solvent and is recovered as a precipitate. The methods are applicable to microgram as well as milligram amounts of protein. In all cases studied, the recovery of protein ranges from 70 to 100%. The recovered protein is suitable for N-terminal Edman degradation, tryptic peptide mapping, and amino acid analysis and can be renatured to regain enzymatic activity and antigenicity.  相似文献   

16.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [γ-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250 000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes.These results suggest that the formation of triphosphoinositide rather than the (Ca2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

17.
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at 3000 × g followed by sedimentation of a microsomal fraction at 200 000 × g. The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591–1.1083 were characterized by (Na+ + K+)-ATPase activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 μm. These fractions contained (Ca2+ + Mg2+)-ATPase which appeared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5–10 μM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell.  相似文献   

18.
(1) The isolated mixtures of ribosomal proteins can be substituted by [14C]-iodoacetamide up to an average of about 2 equivalents per 20 000 dalton. The extent of substitution of single proteins measured after two-dimensional polyacrylamide gel electrophoresis shows that all proteins are reactive.

(2) Also in the subunits, all proteins are accessible to substitution. Compared with isolated proteins, however, the reactivity is decreased and the amount of labelling for most proteins ranges as low as 5 to 20%.

(3) Reassociation of ribosomal subunits decreases the reactivity of 12 proteins of the small subunit and that of 20 proteins of the large subunit.

(4) The presence of messenger inhibits the substitution of 10 proteins of the small subunit and of 6 proteins of the large one.

(5) Seven proteins of the small subunit and 3 proteins of the large one are influenced both by the other subunit and by messenger-RNA.  相似文献   


19.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

20.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号