首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodate-oxidized adenosine has previously been shown to be a potent inhibitor in vitro of S-adenosylhomocysteine hydrolase (E.C. 3.3.1.1). This paper describes the inhibition of this enzyme in liver following injection of mice with periodate-oxidized adenosine. A maximally effective dose of 100 nmol/g of this compound causes liver S-adenosylhomocysteine to increase from 12 to 600 nmol/g within 30 min. This accumulation of S-adenosylhomocysteine provides an estimate of the rates of transmethylation, as well as adenosine and homocysteine production, as being at least 20 nmol/min/g liver. A doubling of S-adenosylmethionine in the liver of mice treated with periodate-oxidized adenosine suggests that the high levels of S-adenosylhomocysteine inhibit some transmethylation reactions.  相似文献   

2.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

3.
(1) The coronary vasodilator adenosine can be formed in the heart by breakdown of AMP or S-adenosylhomocysteine (SAdoHcy). The purpose of this study was to get insight into the relative importance of these routes of adenosine formation in both the normoxic and the ischemic heart. (2) A novel HPLC method was used to determine myocardial adenosine and SAdoHcy. Accumulation of SAdoHcy was induced in isolated rat hearts by perfusion with L-homocysteine thiolactone or L-homocysteine. The release of adenosine, inosine, hypoxanthine, xanthine and uric acid was determined. Additional in vitro experiments were performed to determine the kinteic parameters of S-adenosylhomocysteine hydrolase. (3) During normoxia the thiolactone caused a concentration-dependent increase in SAdoHcy. At 2000 μM of the thiolactone an SAdoHcy accumulation of 0.49 nmol/min per g wet weight was found during normoxia. L-Homocysteine (200 μM) caused an increased of 0.37 and 4.17 nmol SAdony/soc per g wet weight during normaxia and ischemia, respectively. (4) The adenosine concentration in ischemic hearts was significantly lower when homocysteine was infused (6.2 vs. 115 nmol/g; P < 0.05). Purine release was increased 4-fold during ischemia. (5) The Km for hydrolysis of SAdoHcy was about 12 μM. At in vitro conditions favoring near-maximal SAdoHcy synthesis (72 μM adenosine, 1.8 mM homocysteine), the synthesis rate in homogenates was 10 nmol/min per g wet weight. (6) From the combined in vitro and perfusion studies, we comclude that S-adenosylhomocysteine hydrolase can contribute significantly to adenosine production in normoxic rat heart, but not during ischemia.  相似文献   

4.
A coupled spectrophotometric enzyme assay for methyltransferases   总被引:1,自引:0,他引:1  
Adenosine deaminase (EC 3.5.4.4), purified from Aspergillus oryzae, is active in deaminating S-adenosylhomocysteine and its related thioethers, whereas the related sulfonium compound, S-adenosylmethionine, is not deaminated. By taking advantage of the different reactivity of the two compounds, a coupled optical enzyme assay for methyl transfer reactions has been developed. The amount of Ado-Hcy formed is calculated from the decrease in optical density at 265 nm, after addition of an excess of adenosine deaminase. The validity of the method has been tested with three purified enzymes, i.e., homocysteine methyltransferase, histamine methylase, and acetylserotonin methyltransferase. Some kinetic constants of these enzymes have been obtained. The procedure is highly accurate, reproducible, and relatively simple compared to the conventional radio-chemical methods currently in use.  相似文献   

5.
3-Deazaadenosine is both an inhibitor of and a substrate for S-adenosylhomocysteine hydrolase. Its administration to rats results in the accumulation of both S-adenosylhomocysteine and 3-deazaadenosylhomocysteine in the liver and other tissues. In hamsters, however, the administration of 3-deazaadenosine results only in the accumulation of 3-deazaadenosylhomocysteine (P. K. Chiang and G. L. Cantoni (1979) Biochem. Pharmacol. 28, 1897). In order to investigate the possible reasons for this difference, S-adenosylhomocysteine hydrolase from hamster liver has been purified to homogeneity and some of its kinetic and physical parameters have been determined. The molecular weight of the native enzyme is 200,000 with a subunit molecular weight of 48,000. The Km's for adenosine and 3-deazaadenosine are about 1.0 μm, and the Vmax's are also similar. The Km for S-adenosylhomocysteine is 1.0 μm, or more than 10 times smaller than the Km of the rat liver enzyme. This difference in Km value may explain the differences in the response of rat and hamster liver to the administration of 3-deazaadenosine. S-Adenosylhomocysteine hydrolase from hamster liver exhibits an interesting kinetic property in that its activity can be affected bimodally by either adenosine or adenosine Anal.ogs. At very low concentrations of these analogs, the activity of S-adenosylhomocysteine hydrolase can be stimulated by 10–30%, and at higher concentrations these same analogs become competitive inhibitors.  相似文献   

6.
5′-Methylthio[U-14C]adenosine was used as a culture supplement for Candida utilitis. The resulting S-adenosylmethionine was hydrolyzed into its structural components. Virtually none of the label of the pentose was found in the carbohydrate part of the intracellular S-adenosylmethionine. Much of it was present in the four-carbon chain of the methionine part of the sulfonium compound. The U-14C)-labeled adenine of 5′-methylthio[U-14C]adenosine did not contribute to the labeling of the amino acid component of the sulfonium compound.  相似文献   

7.
Elevated plasma homocysteine (Hcy) levels are an independent risk factor for the onset and progression of Alzheimer’s disease. Reduction of Hcy to normal levels therefore presents a new approach for disease modification. Hcy is produced by the cytosolic enzyme S-adenosylhomocysteine hydrolase (AHCY), which converts S-adenosylhomocysteine (SAH) to Hcy and adenosine. Herein we describe the design and characterization of novel, substrate-based S-adenosylhomocysteine hydrolase inhibitors with low nanomolar potency in vitro and robust activity in vivo.  相似文献   

8.
Mudd SH  Datko AH 《Plant physiology》1990,93(2):623-630
The metabolism of S-methylmethionine has been studied in cultures of plants of Lemna paucicostata and of cells of carrot (Daucus carota) and soybean (Glycine max). In each system, radiolabeled S-methylmethionine was rapidly formed from labeled l-methionine, consistent with the action of S-adenosyl-l-methionine:methionine S-methyltransferase, an enzyme which was demonstrated during these studies in Lemna homogenates. In Lemna plants and carrot cells radiolabel disappeared rapidly from S-methylmethionine during chase incubations in nonradioactive media. The results of pulse-chase experiments with Lemna strongly suggest that administered radiolabeled S-methylmethionine is metabolized initially to soluble methionine, then to the variety of compounds formed from soluble methionine. An enzyme catalyzing the transfer of a methyl group from S-methylmethionine to homocysteine to form methionine was demonstrated in homogenates of Lemna. The net result of these reactions, together with the hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine, is to convert S-adenosylmethionine to methionine and adenosine. A physiological advantage is postulated for this sequence in that it provides the plant with a means of sustaining the pool of soluble methionine even when overshoot occurs in the conversion of soluble methionine to S-adenosylmethionine. The facts that the pool of soluble methionine is normally very small relative to the flux into S-adenosylmethionine and that the demand for the latter compound may change very markedly under different growth conditions make it plausible that such overshoot may occur unless the rate of synthesis of S-adenosylmethionine is regulated with exquisite precision. The metabolic cost of this apparent safeguard is the consumption of ATP. This S-methylmethionine cycle may well function in plants other than Lemna, but further substantiating evidence is neeeded.  相似文献   

9.
Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.  相似文献   

10.
A sensitive and rapid method for measuring simultaneously adenosine, S-adenosylhomocysteine and S-adenosylmethionine in renal tissue, and for the analysis of adenosine and S-adenosylhomocysteine concentrations in the urine is presented. Separation and quantification of the nucleosides are performed following solid-phase extraction by reversed-phase ion-pair high-performance liquid chromatography with a binary gradient system. N6-Methyladenosine is used as the internal standard. This method is characterized by an absolute recovery of over 90% of the nucleosides plus the following limits of quantification: 0.25–1.0 nmol/g wet weight for renal tissue and 0.25–0.5 μM for urine. The relative recovery (corrected for internal standard) of the three nucleosides ranges between 98.1±2.6% and 102.5±4.0% for renal tissue and urine, respectively (mean±S.D., n=3). Since the adenosine content in kidney tissue increases instantly after the onset of ischemia, a stop freezing technique is mandatory to observe the tissue levels of the nucleosides under normoxic conditions. The resulting tissue contents of adenosine, S-adenosylhomocysteine and S-adenosylmethionine in normoxic rat kidney are 5.64±2.2, 0.67±0.18 and 46.2±1.9 nmol/g wet weight, respectively (mean±S.D., n=6). Urine concentrations of adenosine and S-adenosylhomocysteine of man and rat are in the low μM range and are negatively correlated with urine flow-rate.  相似文献   

11.
12.
NAD, 1-methylnicotinamide, S-adenosylmethionine, and S-adenosylhomocysteine levels were analyzed in different clones of untransformed normal rat kidney cells and in cells transformed by different viruses. No consistent changes in the levels of these metabolites were apparent as a result of malignant transformation, and also differences in the levels of metabolites did not correlate with growth rate in the various cell lines. 3-Deazaadenosine prevented synthesis of 1-methylnicotinamide but not of NAD. The S-denosylmethionine/S-adenosylhomocysteine ratio did not change in serum-starved, growth-arrested cells although 1-methylnicotinamide synthesis increased about twofold. These results were used to consider possible physiological roles for 1-methylnicotinamide. Its intracellular levels did not correlate with growth rate and were not altered by transformation. No evidence was obtained that its synthesis is involved with maintenance of nicotinamide of S-adenosylmethionine levels. Thus the biological function for 1-methylnicotinamide remains a mystery.  相似文献   

13.
The possibility that dimethyl selenide production depletes liver S-adenosylmethionine was explored as a biochemical basis for selenite toxicity. Toxic doses of selenite (25 nmol/ g body weight) were found to rapidly decrease mouse liver S-adenosylmethionine and increase S-adenosylhomocysteine, indicative of an increased rate of transmethylation. However, S-adenosylmethionine levels remained depressed beyond the time when dimethyl selenide synthesis ceased, suggesting that selenite inactivated methionine adenosyltransferase. This was found to be the case in vivo by measuring the effect of graded doses of selenite on the conversion of the methionine analog, ethionine, to S-adenosylethionine. In vitro studies also indicated inactivation of this enzyme by selenite. Liver homogenates from mice injected with 25 nmol of selenite/g, as above, were found to have less than 50% of the methionine adenosyltransferase activity of saline-injected controls.  相似文献   

14.
We have investigated the enzymatic formation of S-adenosylmethionine in extracts of a variety of normal and oncogenically-transformed human and rat cell lines which differ in their ability to grow in medium in which methionine is replaced by its immediate precursor homocysteine. We have localized the bulk of the S-adenosylmethionine synthetase activity to the post-mitochondrial supernatant. We show that in all cell lines a single kinetic species exists in a dialyzed extract with a Km for methionine of about 3–12 μM. In selected lines we have demonstrated a requirement for Mg2+ in addition to that needed to form the Mg·ATP complex for enzyme activity and have shown that the enzyme can be regulated by product feedback inhibition. Because we detect no differences in the enzymatic ability of these cell extracts to utilize methionine for S-adenosylmethionine formation in vitro, we suggest that the failure of oncogenically-transformed cell lines to grow in homocysteine medium may result from the decreased methionine pools in these cells or from the loss of ability of these cells to properly metabolize homocysteine, adenosine, or their cellular product S-adenosylhomocysteine.  相似文献   

15.
Magnesium protoporphyrin IX O-methyltransferase (ChlM) catalyzes transfer of the methyl group from S-adenosylmethionine to the carboxyl group of the C13 propionate side chain of magnesium protoporphyrin IX. This reaction is the second committed step in chlorophyll biosynthesis from protoporphyrin IX. Here we report the crystal structures of ChlM from the cyanobacterium Synechocystis sp. PCC 6803 in complex with S-adenosylmethionine and S-adenosylhomocysteine at resolutions of 1.6 and 1.7 Å, respectively. The structures illustrate the molecular basis for cofactor and substrate binding and suggest that conformational changes of the two “arm” regions may modulate binding and release of substrates/products to and from the active site. Tyr-28 and His-139 were identified to play essential roles for methyl transfer reaction but are not indispensable for cofactor/substrate binding. Based on these structural and functional findings, a catalytic model is proposed.  相似文献   

16.
Adenosine (1 μM) was incubated in the presence of dialyzed crude tissue extract from mouse liver and its degradation determined. At high concentration of tissue extract, a fraction of adenosine was not metabolized. This phenomenon, termed sequestration of adenosine, was shown to be affected in the same way by the same factors (pH, salt, reducing agent and adenine) as those affecting the protection of adenosine against deamination in the presence of the purified cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase from mouse liver (Sæbø, J. and Ueland, P.M. (1979) Biochim. Biophys. Acta 587, 333–340). These data point to a role of this protein in the sequestration of adenosine in crude extract.The sequestration potency in crude extract could be determined by diluting the extract in the presence of a constant amount of adenosine deaminase added to the tissue extract. Under these conditions there was linearity of adenosine not available for degradation versus the concentration of tissue extract, and a total recovery of the sequestration potency of purified binding protein added to the crude extract was observed.The tissue level of the cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase in mouse liver was determined by two independent procedures based on the sequestration of adenosine and the hydrolysis of S-adenosylhomocysteine, respectively. The intracellular concentration was calculated to be 10 μM.The sequestration of adenosine in crude extract from mouse, rat, rabbit and bovine tissues was determined and showed requirements similar to those of the sequestration in mouse liver extract.The ability to sequester adenosine was high in liver and decreased in the following order: liver, kidney, adrenal cortex, brain, uterus, cardiac and skeletal muscle.  相似文献   

17.
S-Adenosylhomocysteine hydrolase (SahH) is known as an ubiquitous player in methylation-based process that maintains the intracellular S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) equilibrium. Given its crucial role in central metabolism in both eukaryotes and prokaryotes, it is assumed that SahH must be regulated, albeit little is known regarding molecular mechanisms governing its activity. We report here that SahH from Mycobacterium tuberculosis can be phosphorylated by mycobacterial Ser/Thr protein kinases and that phosphorylation negatively affects its enzymatic activity. Mass spectrometric analyses and site-directed mutagenesis identified Thr2 and Thr221 as the two phosphoacceptors. SahH_T2D, SahH_T221D and SahH_T2D/T221D, designed to mimic constitutive phosphorylation, exhibited markedly decreased activity compared to the wild-type enzyme. Both residues are fully conserved in other mycobacterial SahH orthologues, suggesting that SahH phosphorylation on Thr2 and Thr221 may represent a novel and presumably more general mechanism of regulation of the SAH/SAM balance in mycobacteria.  相似文献   

18.
Changes in the activity of the tRNA methyltransferases have been found in all differentiating systems studied. Activity was examined in extracts of Rana pipiens embryos and in larval and adult liver by in vitro assay using S-adenosyl-l-[methyl-14C]methionine as the methyl donor. Specific activities of tRNA methyltransferases decreased, beginning with the time of feeding, when using high concentrations of the crude liver enzyme. A new methyltransferase activity, glycine N-methyltransferase, appeared at the time of feeding. Apparently, the glycine methyltransferase is active before the onset of any of the characteristic metamorphic changes of other liver enzymes. Using partially purified enzyme from adult liver, the Km of glycine methyltransferase for S-adenosylmethionine is 0.3 mM and the Ki for S-adenosylhomocysteine, a competitive inhibitor, is 0.08 mM.  相似文献   

19.
S-Adenosylmethionine decarboxylase was purified from the livers of calves treated with methylglyoxal bis (guanylhydrazone) to elevate the level of the enzyme. Purified bovine S-adenosylmethionine decarboxylase was similar in specific activity and subunit molecular weight (32 000) to the enzymes previously isolated from rat and mouse. The bovine liver enzyme immunologically crossreacted with S-adenosylmethionine decarboxylase from resting and mitogenically activated bovine lymphocytes. The rate of enzyme synthesis in activated lymphocytes was determined by labeling the cells with [3H]leucine and isolating the radioactive decarboxylase by affinity chromatography and sodium dodecyl sulfate gel electrophoresis. The rate of enzyme syntheis was increased 10-fold by 9 h after mitogen treatment, which accounts for the initial increase in cellular enzymatic. There was no further incraese in the rate of S-adenosylmethionine decarboxylase synthesis that correlated with a second elevation of activity occuring at approx. 24 h after mitogenic activation. It was concluded that the second increase in enzyme activity was due to lengthening the intracellular half-life of the enzyme by 2-fold.  相似文献   

20.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号