首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conjugation system of the IncP alpha plasmid RK2/RP4 is encoded by transfer regions designated Tra1, Tra2, and Tra3. The Tra1 core region, cloned on plasmid pDG4 delta 22, consists of the origin of transfer (oriT) and 2.6 kilobases of flanking DNA providing IncP alpha plasmid-specific functions that allow pDG4 delta 22 to be mobilized by the heterologous IncP beta plasmid R751. Tn5 insertions in pDG4 delta 22 define a minimal 2.2-kilobase region required for plasmid-specific transfer of oriT. The Tra1 core contains the traJ and traK genes as well as an 18-kilodalton open reading frame downstream of traJ. The traJ and traK genes were shown to be required for transfer by complementation of inserts within these genes. Genetic evidence for the role of the 18-kilodalton open reading frame in transfer was obtained, although this protein has not been detected in cell lysates. These studies indicate that at least three transfer proteins are involved in plasmid-specific interactions at oriT.  相似文献   

2.
3.
L Miele  B Strack  V Kruft  E Lanka 《DNA sequence》1991,2(3):145-162
The primase genes of RP4 are part of the primase operon located within the Tra1 region of this conjugative plasmid. The operon contains a total of seven transfer genes four of which (traA, B, C, D) are described here. Determination of the nucleotide sequence of the primase region confirmed the existence of an overlapping gene arrangement at the DNA primase locus (traC) with in-phase translational initiation signals. The traC gene encodes two acidic and hydrophilic polypeptide chains of 1061 (TraC1) and 746 (TraC2) amino acids corresponding to molecular masses of 116,721 and 81,647 Da. In contrast to RP4 the IncP beta plasmid R751 specifies four large primase gene products (192, 152, 135 and 83 kDa) crossreacting with anti-RP4 DNA primase serum. As shown by deletion analysis at least the 135 and 83 kDa polypeptides are two separate translational products that by analogy with the RP4 primases, arise from in-phase translational initiation sites. Even the smallest primase gene products TraC2 (RP4) and TraC4 (R751) exhibit primase activity. Nucleotide sequencing of the R751 primase region revealed the existence of three in-phase traC translational initiation signals leading to the expression of gene products with molecular masses of 158,950 Da, 134,476 Da, and 80,759 Da. The 192 kDa primase polypeptide is suggested to be a fusion protein resulting from an in frame translational readthrough of the traD UGA stopcodon. Distinct sequence similarities can be detected between the TraC proteins of RP4 and R751 gene products TraC3 and TraC4 and in addition between the TraD proteins of both plasmids. The R751 traC3 gene contains a stretch of 507 bp which is unrelated to RP4 traC or any other RP4 Tra1 gene.  相似文献   

4.
Conjugative transfer of the self-transmissible IncP plasmid RP4 requires the product of the RP4 traK gene. By using the phage T7 expression system, the traK gene product was efficiently overproduced and purified to near homogeneity. traK encodes a basic protein (pI = 10.7) of 14.6 kDa that, as shown by DNA fragment retention assay, interacts exclusively with its cognate transfer origin. The apparent equilibrium constant K(app) for the complex of TraK and oriT-DNA was estimated to be 4 nM. Footprinting experiments using DNase I or hydroxyl radicals indicate that several TraK molecules interact specifically with an intrinsically bent region of oriT, covering a range of almost 200 base pairs. The TraK target sequence maps in the leading region adjacent to the relaxation nick site and recognition sequences involved in relaxosome formation but does not overlap them. Specific interactions between TraK and the DNA occur only on one side of the double helix. Electron microscopy of TraK-oriT complexes demonstrates that binding of TraK to its recognition region apparently shrinks the length of the target DNA, suggesting that the nucleic acid becomes wrapped around a core of TraK molecules. Formation of this structure could be favored by the presence of the sequence-directed bend in the TraK recognition region.  相似文献   

5.
6.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

7.
The conjugative IncN plasmids pKM101 and pCU1 have previously been shown to contain identical oriT sequences as well as conserved restriction endonuclease cleavage patterns within their tra regions. Complementation analysis and sequence data presented here indicate that these two plasmids encode essentially identical conjugal DNA-processing proteins. This region contains three genes, traI, traJ, and traK, transcribed in the same orientation from a promoter that probably lies within or near the conjugal transfer origin (oriT). Three corresponding proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and complementation analysis confirmed that this region contains three tra complementation groups. All three proteins resemble proteins of the IncW plasmid R388 and other plasmids thought to have roles in processing of plasmid DNA during conjugation. The hydropathy profile of TraJ suggests a transmembrane topology similar to that of several homologous proteins. Both traK and traI were required for efficient interplasmid site-specific recombination at oriT, while traJ was not required. The leading region of pKM101 contains three genes (stbA, stbB, and stbC), null mutations in which cause elevated levels of plasmid instability. Plasmid instability was observed only in hosts that are proficient in interplasmid recombination, suggesting that this recombination can potentially lead to plasmid loss and that Stb proteins somehow overcome this, possibly via site-specific multimer resolution.  相似文献   

8.
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.  相似文献   

9.
We have determined the DNA sequences of two unlinked regions of octopine-type Ti plasmids that contain genes required for conjugal transfer. Both regions previously were shown to contain sequences that hybridize with tra genes of the nopaline-type Ti plasmid pTiC58. One gene cluster (designated tra) contains a functional oriT site and is probably required for conjugal DNA processing, while the other gene cluster (designated trb) probably directs the synthesis of a conjugal pilus and mating pore. Most predicted Tra and Trb proteins show relatively strong sequence similarity (30 to 50% identity) to the Tra and Trb proteins of the broad-host-range IncP plasmid RP4 and show significantly weaker sequence similarity to Vir proteins found elsewhere on the Ti plasmid. An exception is found in the Ti plasmid TraA protein, which is predicted to be a bifunctional nickase-helicase that has no counterpart in IncP plasmids or among Vir proteins but has homologs in at least six other self-transmissible and mobilizable plasmids. We conclude that this Ti plasmid tra system evolved by acquiring genes from two or three different sources. A similar analysis of the Ti plasmid vir region indicates that it also evolved by appropriating genes from at least two conjugal transfer systems. The widely studied plasmid pTiA6NC previously was found to be nonconjugal and to have a 12.65-kb deletion of DNA relative to other octopine-type Ti plasmids. We show that this deletion removes the promoter-distal gene of the trb region and probably accounts for the inability of this plasmid to conjugate.  相似文献   

10.
Transfer genes of the IncP plasmid RP4 are grouped in two separate regions, designated Tra1 and Tra2. Tra2 gene products are proposed to be mainly responsible for the formation of mating pairs in conjugating cells. To provide information relevant to understanding the function of Tra2 gene products, the nucleotide sequence of the entire RP4 Tra2 region is presented here. Twelve open reading frames were identified in the Tra2 core region, being essential for intraspecific Escherichia coli matings. Predicted sizes of 11 of the 12 Tra2 polypeptides could be verified by expression in E. coli. Based on hydropathy plot analysis, most of the Tra2 open reading frames encode proteins that may interact with membranes. Interestingly, six of the predicted Tra2 gene products exhibited significant sequence similarities to gene products encoded by the VirB operon of the Agrobacterium Ti plasmid. VirB proteins are thought to function in the formation of a transmembrane structure that mediates the passage of T-DNA molecules from bacteria into plant cells. Because of this analogy and the hydropathy of Tra2 gene products, we assume that the DNA transfer machineries acting in bacterial conjugation and T-DNA transfer are structurally and functionally similar. Therefore, the data presented here, support the hypothesis that Ti vir and IncP tra genes evolved from a common ancestor. This suggestion is favored by previous findings of sequence similarities between the IncP and Ti DNA transfer system.  相似文献   

11.
Plasmid pBS221 was physically mapped for restriction endonucleases EcoRI, BamHI, BglII, HindIII. The regions essential for the plasmid existence and participating in replication (oriV trfA*) and mobilization (mob) were cloned. The tet determinant and oriV trfA* regions were localized on the physical map of the plasmid. A DNA sequence homologous to genes of Tn501 mer operon was detected in this plasmid. The studies on homology of plasmids RP4 (IncP alpha), R751 (IncP beta) and pBS221 plasmid suggest that the latter belongs to the IncP beta subgroup.  相似文献   

12.
Bacteroides conjugative transposons can act in trans to excise, circularize, and transfer unlinked integrated elements called NBUs (for nonreplicating Bacteroides units). Previously, we localized and sequenced the mobilization region of one NBU, NBU1, and showed that this mobilization region was recognized by the IncP plasmids RP4 and R751, as well as by the Bacteroides conjugative transposons. We report here that the single mobilization protein carried by NBU1 appears to be a bifunctional protein that binds to the oriT region and catalyzes the nicking reaction that initiates the transfer process. We have also localized and sequenced the mobilization region of a second NBU, NBU2. The NBU2 mobilization region was 86 to 90% identical at the DNA sequence to the oriT-mob region of NBU1. The high sequence similarity between NBU1 and NBU2 ended abruptly after the stop codon of the mob gene and about 1 kbp upstream of the oriT region, indicating that the oriT-mob regions of NBU1 and NBU2 may be on some sort of cassette. A region on NBU1 and NBU2 which lies immediately upstream of the oriT region had 66% sequence identity to a region upstream of the oriT region on a mobilizable transposon, Tn4399, an element that had previously appeared to be completely unrelated to the NBUs.  相似文献   

13.
Horizontal DNA transfer contributes significantly to the dissemination of antibiotic resistance genes in Bacteroides fragilis. To further our understanding of DNA transfer in B. fragilis, we isolated and characterized a new transfer factor, cLV25. cLV25 was isolated from B. fragilis LV25 by its capture on the nonmobilizable Escherichia coli-Bacteroides shuttle vector pGAT400DeltaBglII. Similar to other Bacteroides sp. transfer factors, cLV25 was mobilized in E. coli by the conjugative plasmid R751. Using Tn1000 mutagenesis and deletion analysis of cLV25, two mobilization genes, bmgA and bmgB, were identified, whose predicted proteins have similarity to DNA relaxases and mobilization proteins, respectively. In particular, BmgA and BmgB were homologous to MocA and MocB, respectively, the two mobilization proteins of the B. fragilis mobilizable transposon Tn4399. A cis-acting origin of transfer (oriT) was localized to a 353-bp region that included nearly all of the intergenic region between bmgB and orf22 and overlapped with the 3' end of orf22. This oriT contained a putative nic site sequence but showed no significant similarity to the oriT regions of other transfer factors, including Tn4399. Despite the lack of sequence similarity between the oriTs of cLV25 and Tn4399, a mutation in the cLV25 putative DNA relaxase, bmgA, was partially complemented by Tn4399. In addition to the functional cross-reaction with Tn4399, a second distinguishing feature of cLV25 is that predicted proteins have similarity to proteins encoded not only by Tn4399 but by several Bacteroides sp. transfer factors, including NBU1, NBU2, CTnDOT, Tn4555, and Tn5520.  相似文献   

14.
A 6.72-kb DNA sequence between the exc gene and the oriT operon within the transfer region of IncI1 plasmid R64 was sequenced and characterized. Three novel transfer genes, trbA, trbB, and trbC, were found in this region, along with the pnd gene responsible for plasmid maintenance. The trbABC genes appear to be organized into an operon located adjacent to the oriT operon in the opposite orientation. The trbA and trbC genes were shown to be indispensable for R64 plasmid transfer, while residual transfer activity was detected in the case of R64 derivatives carrying the trbB++ deletion mutation. The T7 RNA polymerase-promoter system revealed that the trbB gene produced a 43-kDa protein and the trbC gene produced an 85-kDa protein. The nucleotide sequence of the pnd gene is nearly identical to that of plasmid R483, indicating a function in plasmid maintenance. The plasmid stability test indicated that the mini-R64 derivatives with the pnd gene are more stably maintained in Escherichia coli cells under nonselective conditions than the mini-R64 derivatives without the pnd gene. It was also shown that the R64 transfer system itself is involved in plasmid stability to a certain degree. Deletion of the pnd gene from the tra+ mini-R64 derivative did not affect transfer frequency. DNA segments between the exc and trbA genes for IncI1 plasmids R64, Colb-P9, and R144 were compared in terms of their physical and genetic organization.  相似文献   

15.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

16.
17.
18.
The nucleotide sequence of the DNA mobilization region of the 5-nitroimidazole resistance plasmid pIP421, from strain BF-F239 of Bacteroides fragilis, was determined. It contains a putative origin of transfer (oriT) including three sets of inverted repeats and two sequences reminiscent of specific integration host factor binding sites. The product of the mobilization gene mob421 (42.2 kDa) is a member of the Bacteroides mobilization protein family, which includes the MobA of pBI143, NBUs, and Tn4555. Sequence similarity suggests that it has both oriT binding and nicking activities. The transfer frequency of pIP421 in a B. fragilis donor strain possessing a Tc(r) or Tc(r) Em(r)-like conjugative transposon was significantly enhanced by tetracycline. Moreover, the mobilization region of pIP421 confers the ability to be mobilized from Escherichia coli by an IncP plasmid.  相似文献   

19.
Transferable plasmids play an important role in the dissemination of clindamycin-erythromycin resistance in Bacteroides fragilis. We previously described the isolation and properties of pBFTM10, a 14.9-kb ClnR transfer factor from B. fragilis TMP10. We also reported the isolation of a transfer-deficient deletion derivative of pBFTM10 contained in the B. fragilis-Escherichia coli shuttle vector pGAT400. In the present study we used pGAT400 and a similar shuttle vector, pGAT550, to characterize and sequence a region of pBFTM10 required for its transfer from B. fragilis to B. fragilis or E. coli recipients and for its mobilization by the broad-host-range plasmid R751 from E. coli donors to E. coli recipients. Deletion of certain BglII restriction fragments from pBFTM10 resulted in partial or complete loss of transfer ability. Tn1000 insertions into this same region also resulted in altered transfer properties. We used the sites of Tn1000 insertions to determine the DNA sequence of the transfer region. Two potential open reading frames encoding proteins of 23.2 and 33.8 kDa, corresponding to two genes, btgA or btgB, were identified in the sequence. Tn1000 insertions within btgA or btgB or deletion of all or portions of btgA or btgB resulted in either a transfer deficiency or greatly reduced transfer from B. fragilis donors and alterations in mobilization by R751 in E. coli. A potential oriT sequence showing similarity in organization to the oriT regions of the IncP plasmids was also detected. Thus, pBFTM10 encodes and requires at least two proteins necessary for efficient transfer from B. fragilis. These same functions are expressed in E. coli and are required for mobilization by R751.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号