首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By directed evolution and subsequent site‐directed mutagenesis, cold‐adapted variants of WF146 protease, a thermophilic subtilase, have been successfully engineered. A four‐amino acid substitution variant RTN29 displayed a sixfold increase in caseinolytic activity in the temperature range of 15–25°C, a down‐shift of optimum temperature by ~15°C, as well as a decrease in thermostability, indicating it follows the general principle of trade‐off between activity and stability. Nevertheless, to some extent RTN29 remained its thermophilic nature, and no loss of activity was observed after heat‐treatment at 60°C for 2 h. Notably, RTN29 exhibited a lower hydrolytic activity toward suc‐AAPF‐pNA, due to an increase in Km and a decrease in kcat, in contrast to other artificially cold‐adapted subtilases with increased low‐temperature activity toward small synthetic substrates. All mutations (S100P, G108S, D114G, M137T, T153A, and S246N) identified in the cold‐adapted variants occurred within or near the substrate‐binding region. None of these mutations, however, match the corresponding sites in naturally psychrophilic and other artificially cold‐adapted subtilases, implying there are multiple routes to cold adaptation. Homology modeling and structural analysis demonstrated that these mutations led to an increase in mobility of substrate‐binding region and a modulation of substrate specificity, which seemed to account for the improvement of the enzyme's catalytic activity toward macromolecular substrates at lower temperatures. Our study may provide valuable information needed to develop enzymes coupling high stability and high low‐temperature activity, which are highly desired for industrial use. Biotechnol. Bioeng. 2009; 104: 862–870. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Most transplant experiments across species geographic range boundaries indicate that adaptation to stressful environments outside the range is often constrained. However, the mechanisms of these constraints remain poorly understood. We used extended generation crosses from diverged high and low elevation populations. In experiments across low elevation range boundaries, there was selection on the parental lines for abiotic stress‐tolerance and resistance to herbivores. However, in support of a defense‐tolerance trade‐off, extended generation crosses showed nonindependent segregation of these traits in the laboratory across a drought‐stress gradient and in the field across the low elevation range boundary. Genotypic variation in a marker from a region of the genome containing a candidate gene (MYC2) was associated with change in the genetic trade‐off. Thus, using crosses and forward genetics, we found experimental genetic and molecular evidence for a pleiotropic trade‐off that could constrain the evolution of range expansion.  相似文献   

3.
Trade‐offs have often been invoked to explain the evolution of ecological specialization. Phytophagous insects have been especially well studied, but there has been little evidence that resource‐based trade‐offs contribute to the evolution of host specialization in this group. Here, we combine experimental evolution and partial genome resequencing of replicate seed beetle selection lines to test the trade‐off hypothesis and measure the repeatability of evolution. Bayesian estimates of selection coefficients suggest that rapid adaptation to a poor host (lentil) was mediated by standing genetic variation at multiple genetic loci and involved many of the same variants in replicate lines. Sublines that were then switched back to the ancestral host (mung bean) showed a more gradual and variable (less repeatable) loss of adaptation to lentil. We were able to obtain estimates of variance effective population sizes from genome‐wide differences in allele frequencies within and between lines. These estimates were relatively large, which suggests that the contribution of genetic drift to the loss of adaptation following reversion was small. Instead, we find that some alleles that were favored on lentil were selected against during reversion on mung bean, consistent with the genetic trade‐off hypothesis.  相似文献   

4.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

5.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

6.
7.
Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotype's nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria.  相似文献   

8.
The trade‐off between offspring size and number is a central component of life‐history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade‐off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among‐individual differences can mask individual trade‐offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade‐off between offspring size and number in a population of sand lizards by separating among‐ and within‐individual patterns using a 15‐year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade‐off by investigating how a female's resource (condition)‐ vs. age‐related size (snout‐vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade‐off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade‐off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life‐history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within‐individual patterns can reveal trade‐offs and their underlying causes, with potential evolutionary and ecological consequences that are otherwise hidden by among‐individual variation.  相似文献   

9.
Group living is favorable to pathogen spread due to the increased risk of disease transmission among individuals. Similar to individual immune defenses, social immunity, that is antiparasite defenses mounted for the benefit of individuals other than the actor, is predicted to be altered in social groups. The eusocial honey bee (Apis mellifera) secretes glucose oxidase (GOX), an antiseptic enzyme, throughout its colony, thereby providing immune protection to other individuals in the hive. We conducted a laboratory experiment to investigate the effects of group density on social immunity, specifically GOX activity, body mass and feeding behavior in caged honey bees. Individual honeybees caged in a low group density displayed increased GOX activity relative to those kept at a high group density. In addition, we provided evidence for a trade‐off between GOX activity and body mass: Individuals caged in the low group density had a lower body mass, despite consuming more food overall. Our results provide the first experimental evidence that group density affects a social immune response in a eusocial insect. Moreover, we showed that the previously reported trade‐off between immunity and body mass extends to social immunity. GOX production appears to be costly for individuals, and potentially the colony, given that low body mass is correlated with small foraging ranges in bees. At high group densities, individuals can invest less in social immunity than at low densities, while presumably gaining shared protection from infection. Thus, there is evidence that trade‐offs at the individual level (GOX vs. body mass) can affect colony‐level fitness.  相似文献   

10.
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three‐spined stickleback Gasterosteus aculeatus L. across a small‐scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three‐spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.  相似文献   

11.
Adaptation can occur with or without genome‐wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome‐wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome‐wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome‐wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome‐wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome‐wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.  相似文献   

12.
Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade‐off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade‐off peaking approximately at the pathogen's optimum growth temperature. A genetic trade‐off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming.  相似文献   

13.
Stress adaptations often include a trade‐off of weakened performance in nonlocal conditions, resulting in divergent selection, and potentially, genetic differentiation and evolutionary adaptation. Results of a two‐phase (greenhouse and field) common garden experiment demonstrated adaptation of mountain birch (Betula pubescens subsp. czerepanovii) populations from industrially polluted areas of the Kola Peninsula, north‐western Russia, to heavy metals (HM), whereas no adaptations to wind or drought stress were detected in populations from wind‐exposed sites. HM‐adapted seedlings were maladapted to drought but less palatable (co‐resistant) to insect herbivores, even under background HM concentrations. The absence of adaptations to harsh microclimate and the generally high adaptive potential of mountain birch, a critical forest forming tree in subarctic Europe, need to be accounted for in models predicting consequences of human‐driven environmental changes, including the projected climate change.  相似文献   

14.
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active‐site structural similarities has not yet been undertaken. Pyridoxal‐5′‐phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP‐dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three‐dimensional‐fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. Proteins 2014; 82:2597–2608. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Several experimental techniques were applied to unravel fine molecular details of protein adaptation to high salinity. We compared four homologous enzymes, which suggested a new halo-adaptive state in the process of molecular adaptation to high-salt conditions. Together with comparative functional studies, the structure of malate dehydrogenase from the eubacterium Salinibacter ruber shows that the enzyme shares characteristics of a halo-adapted archaea-bacterial enzyme and of non-halo-adapted enzymes from other eubacterial species. The S. ruber enzyme is active at the high physiological concentrations of KCl but, unlike typical halo-adapted enzymes, remains folded and active at low salt concentrations. Structural aspects of the protein, including acidic residues at the surface, solvent-exposed hydrophobic surface, and buried hydrophobic surface, place it between the typical halo-adapted and non-halo-adapted proteins. The enzyme lacks inter-subunit ion-binding sites often seen in halo-adapted enzymes. These observations permit us to suggest an evolutionary pathway that is highlighted by subtle trade-offs to achieve an optimal compromise among solubility, stability, and catalytic activity.  相似文献   

16.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

17.
Trade‐offs are fundamental to evolutionary outcomes and play a central role in eco‐evolutionary theory. They are often examined by experimentally selecting on one life‐history trait and looking for negative correlations in other traits. For example, populations of the moth Plodia interpunctella selected to resist viral infection show a life‐history cost with longer development times. However, we rarely examine whether the detection of such negative genetic correlations depends on the trait on which we select. Here, we examine a well‐characterized negative genotypic trade‐off between development time and resistance to viral infection in the moth Plodia interpunctella and test whether selection on a phenotype known to be a cost of resistance (longer development time) leads to the predicted correlated increase in resistance. If there is tight pleiotropic relationship between genes that determine development time and resistance underpinning this trade‐off, we might expect increased resistance when we select on longer development time. However, we show that selecting for longer development time in this system selects for reduced resistance when compared to selection for shorter development time. This shows how phenotypes typically characterized by a trade‐off can deviate from that trade‐off relationship, and suggests little genetic linkage between the genes governing viral resistance and those that determine response to selection on the key life‐history trait. Our results are important for both selection strategies in applied biological systems and for evolutionary modelling of host–parasite interactions.  相似文献   

18.
酶祖先序列重建是指通过计算机算法推导来自灭绝生物的祖先酶的氨基酸序列的技术。通常可分为6个步骤,依次为现代酶的核酸/氨基酸序列收集、多序列比对、系统发育树构建、祖先酶序列的计算机推测、基因克隆、酶学性质表征。该方法广泛应用于研究分子在行星时间尺度上对环境条件不断变化的适应性和进化机制。随着酶在生物催化领域中扮演越来越重要的角色,该方法逐渐成为研究酶序列、结构和功能关系的有力手段。同时,祖先酶大多具有温度稳定性、突变稳定性等特性,使其成为进一步定向进化的理想蛋白质支架。文中综述了酶祖先序列重建的计算机算法、应用和常用计算机软件,并结合最新研究进展,展望其在酶定向进化领域中的应用前景。  相似文献   

19.
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals.  相似文献   

20.
The future of hydrogen as fuel strongly depends on the possibility to produce it in an economic and clean way. Hydrogen can be produced from carbohydrates and water under mild conditions by means of a multistep synthetic pathway (13 enzymes) with very high yield. Crossover inhibitions and different optimal conditions of involved enzymes hinder the use of one‐pot approach. Immobilization of enzymes in coupled individual reactors may avoid this problem. This work deals with the immobilization in silica‐based hydrogels of one key enzyme of this pathway: glucose 6‐phosphate dehydrogenase from Leuconostoc mesenteroides. The carriers were prepared with an ethylene glycol‐modified silane, two polymers (polyethylene oxide and Pluronic®) and amino groups created by 3‐aminopropyltriethoxysilane. These parameters influenced the enzymatic activity after immobilization. Gels prepared by addition of polyethylene oxide gave the best results and were used as monoliths in microreactors with two different geometries. The systems showed a high operational stability but a low effective enzyme activity. Enzyme leaching and a nonideal flow pattern may account for the low activity observed. This work is possibly the first one dealing with the immobilization of glucose 6‐phosphate dehydrogenase in silica‐based gels for its application in flow‐through microreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号