首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Reproductive isolation is a critical step in the process of speciation. Among the most important factors driving reproductive isolation are genetic incompatibilities. Whether these incompatibilities are already present before extrinsic factors prevent gene flow between incipient species remains largely unresolved in natural systems. This question is particularly challenging because it requires that we catch speciating populations in the act before they reach the full‐fledged species status. We measured the extent of intrinsic postzygotic isolation within and between phenotypically and genetically divergent lineages of the wild yeast Saccharomyces paradoxus that have partially overlapping geographical distributions. We find that hybrid viability between lineages progressively decreases with genetic divergence. A large proportion of postzygotic inviability within lineages is associated with chromosomal rearrangements, suggesting that chromosomal differences substantially contribute to the early steps of reproductive isolation within lineages before reaching fixation. Our observations show that polymorphic intrinsic factors may segregate within incipient species before they contribute to their full reproductive isolation and highlight the role of chromosomal rearrangements in speciation. We propose different hypotheses based on adaptation, biogeographical events and life history evolution that could explain these observations.  相似文献   

2.
We present a likelihood-based statistical method for examining the pattern or rate of evolution of reproductive isolation. The method uses large empirical datasets to estimate, for a given clade, the average duration of two phases in the divergence of populations. The first phase is a lag phase and refers to the period during which lineages diverge but no detectable reproductive isolation evolves. The second is an accumulation phase, referring to the period during which the magnitude of reproductive isolation between diverging lineages increases. The pattern of evolution is inferred from the relative durations of these two phases. Results of analyses of postzygotic isolation data indicate significant differences among taxa in the pattern of evolution of postzygotic isolation that are consistent with predictions based on genetic differences among these groups. We also examine whether the evolution of postzygotic isolation is best explained by either of two models for the rate of accumulation: a linear model or a quadratic function as may be suggested by recent studies. Our analysis indicates that the appropriateness of either model varies among taxa.  相似文献   

3.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

4.
5.
Based on genetic differentiation, the haploid dioecious bryophyte taxa Polytrichum commune and P. uliginosum have been inferred to be completely reproductively isolated. However, analysing diploid sporophytes from a sympatric population for three diagnostic microsatellite markers, we show here that reproductive isolation between these taxa is far more complex and highly asymmetric. Isolation between female-P. communex male-P. uliginosum seems to be complete and prezygotic (or early postzygotic) as no hybrid sporophytes were observed on P. commune females. In the other direction ( female-P. uliginosumx male-P. commune) isolation was clearly postzygotic as high frequencies of hybrid sporophytes were found on P. uliginosum females. However, during maturation these sporophytes showed irregular development, indicating that hybrid sporophytes are unlikely to produce ripe spores. Mechanisms possibly underlying this asymmetric reproductive isolation pattern are discussed. Notwithstanding hybrid offspring being unlikely, the high frequency of hybrid sporophytes observed suggests that viable spores may be formed occasionally through such rare processes as chromosome nondisjunction, possibly giving rise to allodiploids. Allodiploids have been reported in Polytrichum (and other bryophyte genera). Studies such as the one presented here will therefore help to elucidate the evolutionary importance of interspecific hybridization and allodiploidization in bryophyte speciation.  相似文献   

6.
Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.  相似文献   

7.
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal tissues (malpighian tubules and brain) were analyzed and protein divergence was calculated based on presence vs absence. Both testis and ovary proteins showed higher divergence than nongonadal proteins, and also a highly significant positive correlation with postzygotic reproductive isolation but a weaker correlation with prezygotic reproductive isolation. Particularly, a positive and significant correlation was found between proteins expressed in the testis and postzygotic reproductive isolation among closely related species such as the within-phylad species in the D. virilis group. The high levels of male-reproductive-tract protein divergence between species might be associated with F1 hybrid male sterility among closely related species. If so, a lower level of ovary protein divergence should be expected on the basis that F1 female hybrids are fully fertile. However, this is not necessarily true if relatively few genes are responsible for the reproductive isolation observed between closely related species, as recent studies seem to suggest. We suggest that the faster rate of evolution of gonadal proteins in comparison to nongonadal proteins and the association of that rate with postzygotic reproductive isolation may be the result of episodic and/or sexual selection on male and female molecular traits. Correspondence to: A. Civetta  相似文献   

8.
Reproductive isolation (RI) is a critical component of speciation and varies strongly in timing and strength among different sister taxa, depending on, for example the geography of speciation and divergence time. However, these factors may also produce variation in timing and strength among populations within species. Here we tested for variation in the expression of RI among replicate population pairs between the sister taxa Arabidopsis lyrata subsp. lyrata and A. arenicola. While the former is predominantly outcrossing, the latter is predominantly selfing. We focused on intrinsic prezygotic and postzygotic RI as both species occur largely in allopatry. We assessed RI by performing within-population crosses and interspecific between-population crosses, and by raising offspring. RI was generally high between all interspecific population pairs, but it varied in timing and strength depending on population history. Prezygotic isolation was strongest between the closest-related population pair, while early postzygotic isolation was high for all other population pairs. Furthermore, the timing and strength of RI depended strongly on cross direction. Our study provides empirical support that reproductive barriers between species are highly variable among population pairs and asymmetric within population pairs, and this variation seems to follow patterns typically described across species pairs.  相似文献   

9.
When differentiated lineages come into contact, their fates depend on demographic and reproductive factors. These factors have been well-studied in taxa of the same ploidy, but less is known about sympatric lineages that differ in ploidy, particularly with respect to demographic factors. We assessed prezygotic, postzygotic, and total reproductive isolation in naturally pollinated arrays of diploid-tetraploid and tetraploid-hexaploid population mixes of Campanula rotundifolia by measuring pollinator transitions, seed yield, germination rate, and proportion of hybrid offspring. Four frequencies of each cytotype were tested, and pollinators consistently overvisited rare cytotypes. Seed yield and F1 hybrid production were greater in 4X-6X arrays than 2X-4X arrays, whereas germination rates were similar, creating two distinct patterns of reproductive isolation. In 2X-4X arrays, postzygotic isolation was near complete (3% hybrid offspring), and prezygotic isolation associated with pollinator preference is expected to facilitate the persistence of minority cytotypes. However, in 4X-6X arrays where postzygotic isolation permitted hybrid formation (44% hybrids), pollinator behavior drove patterns of reproductive isolation, with rare cytotypes being more isolated and greater gene flow expected from rare into common cytotypes. In polyploid complexes, both the specific cytotypes in contact and local cytotype frequency, likely reflecting spatial demography, will influence likelihood of gene exchange.  相似文献   

10.
Studies that simultaneously estimate levels of species divergence in genetics, reproductive and ecological traits, and pre‐ and postzygotic isolation are relatively rare. Here we compare levels of divergence in three allopatric sister species of field crickets. We compare divergence in both nuclear and mitochondrial DNA, male song, female ovipositor length, levels of pre‐ and postzygotic isolation, and male versus female contributions to prezygotic isolation. Taken together, our data show the accumulation of a multitude of potential reproductive isolating barriers if secondary contact were to become established. Furthermore, ecological and behavioural prezygotic isolation appear significantly more advanced than postzygotic isolation, with prezygotic isolation due to female behaviour exceeding that due to male behaviour.  相似文献   

11.
Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater‐than‐expected overlap between genes linked to lineage‐specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome‐scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.  相似文献   

12.
Understanding speciation depends on an accurate assessment of the reproductive barriers separating newly diverged populations. In several taxonomic groups, prezygotic barriers, especially preferences for conspecific mates, are thought to play the dominant role in speciation. However, the importance of postzygotic barriers (i.e., low fitness of hybrid offspring) may be widely underestimated. In this study, we examined how well the widely used proxy of postzygotic isolation (reproductive output of F1 hybrids) reflects the long‐term fitness consequences of hybridization between two closely related species of birds. Using 40 species‐specific single nucleotide polymorphism (SNP) markers, we genotyped a mixed population of collared and pied flycatchers (Ficedula albicollis and F. hypoleuca) to identify grand‐ and great grand‐offspring from interspecific crosses to derive an accurate, multigeneration estimate of postzygotic isolation. Two independent estimates of fitness show that hybridization results in 2.4% and 2.7% of the number of descendents typical of conspecific pairing. This postzygotic isolation was considerably stronger than estimates based on F1 hybrids. Our results demonstrate that, in nature, combined selection against hybrids and backcrossed individuals may result in almost complete postzygotic isolation between two comparatively young species. If these findings are general, postzygotic barriers separating hybridizing populations may be much stronger than previously thought.  相似文献   

13.
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near‐complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.  相似文献   

14.
Genetic incompatibility is a hallmark of speciation. Cytonuclear incompatibilities are proposed to be among the first genetic barriers to arise during speciation. Accordingly, reproductive isolation (RI) within species should be heavily influenced by interactions between the organelle and nuclear genomes. However, there are few clear examples of cytonuclear incompatibility within a species. Here, we show substantial postzygotic RI in first‐generation hybrids between differentiated populations of an herbaceous plant (up to 92% reduction in fitness). RI was primarily due to germination and survival, with moderate RI for pollen viability. RI for survival was asymmetric and caused by cytonuclear incompatibility, with the strength of incompatibility linearly related to chloroplast genetic distance. This cytonuclear incompatibility may be the result of a rapidly evolving plastid genome. Substantial asymmetric RI was also found for germination, but was not associated with cytonuclear incompatibility, indicating endosperm or maternal‐zygote incompatibilities. These results demonstrate that cytonuclear incompatibility contributes to RI within species, suggesting that initial rates of speciation could be influenced by rates of organelle evolution. However, other genetic incompatibilities are equally important, indicating that even at early stages, speciation can be a complex process involving multiple genes and incompatibilities.  相似文献   

15.
Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree, Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree, P. subserratum.  相似文献   

16.
The study of reproductive isolation between populations, combined with estimates of genetic divergence, provides important insights into mechanisms of speciation. In this study, sixteen morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta) were brought into culture to study their phylogenetic relationships and pre- and postzygotic reproductive barriers. An ITS rDNA phylogeny was congruent with morphology and divided the clones into three groups ('slender', 'robust' and 'labile'), pointing to the presence of several species in E. bilunaris. Whereas most strains had a heterothallic mating system, four 'labile' clones displayed apomictic behaviour. A further 'labile' clone had a heterothallic mating behaviour, however, suggesting a very recent origin for apomixis. Despite high sequence divergence, hybridization occurred between clones belonging to different groups, but was 20-400 times less frequent than in intra-group matings. F1 hybrids had an intermediate morphology and were almost completely sterile; gamete formation was generally arrested in the early stages of meiosis I. The ITS divergence of 11.5-12.3% between the 'robust' and 'slender' clones seems to represent an upper limit of divergence in which cell pairing, gamete formation and auxosporulation are still possible but heavily reduced, and where hybrid sterility has already evolved.  相似文献   

17.
While reinforcement may play a role in all major modes of speciation, relatively little is known about the timescale over which species hybridize without evolving complete reproductive isolation. Birds have high potential for hybridization, and islands provide simple settings for uncovering speciation and hybridization patterns. Here we develop a phylogenetic hypothesis for a phenotypically diverse radiation of finch-like weaver-birds (Foudia) endemic to the western Indian Ocean islands. We find that unlike Darwin's finches, each island-endemic Foudia population is a monophyletic entity for which speciation can be considered complete. In explaining the only exceptions-mismatches between taxonomy, mitochondrial, and nuclear data-phylogenetic and coalescent methods support introgressive hybridization rather than incomplete lineage sorting. Human introductions of known timing of one island-endemic species, to all surrounding archipelagos provide two fortuitous experiments; (1) population sampling at known times in recent evolutionary history, (2) bringing allopatric lineages of an island radiation into secondary contact. Our results put a minimum time bound on introgression (235 years), and support hybridization between species in natural close contact (parapatry), but not between those in natural allopatry brought into contact by human introduction. Time in allopatry, rather than in sympatry, appears key in the reproductive isolation of Foudia species.  相似文献   

18.
Polyploidy has played an important role in angiosperm diversification, but how polyploidy contributes to reproductive isolation remains poorly understood. Most work has focused on postzygotic reproductive barriers, and the influence of ploidy differences on prezygotic barriers is understudied. To address these gaps, we quantified hybrid occurrence, interspecific self‐compatibility differences, and the contributions of multiple pre‐ and postzygotic barriers to reproductive isolation between diploid Erythronium mesochoreum (Liliaceae) and its tetraploid congener Erythronium albidum. Reproductive isolation between the study species was nearly complete, and naturally occurring hybrids were infrequent and largely sterile. Although postzygotic barriers effected substantial reproductive isolation when considered in isolation, the study species’ spatial distributions and pollinator assemblages overlapped little, such that interspecific pollen transfer is likely uncommon. We did not find evidence that E. albidum and E. mesochoreum differed in mating systems, indicating that self‐incompatibility release may not have fostered speciation in this system. Ultimately, we demonstrate that E. albidum and E. mesochoreum are reproductively isolated by multiple, hierarchically‐operating barriers, and we add to the currently limited number of studies demonstrating that early acting barriers such as pollinator‐mediated isolation can be important for effecting and sustaining reproductive isolation in diploid‐polyploid systems.  相似文献   

19.
The generation of premating isolation given partial or complete postzygotic isolation between populations is termed reinforcement or, in the case of complete isolation, reproductive character displacement. In this study we use computer simulations and a multilocus genetic model to reevaluate the theory of reinforcement. We consider the evolution of female preferences for a male secondary sexual trait. If the populations differ in mean female preference, there is direct selection on the preference for further divergence, which may be augmented by a correlated response to sexual selection on males. Two factors prevent divergence. First, if postzygotic isolation is not complete, gene flow can prevent divergence and lead to a hybrid swarm. This is the usual outcome whenever the average number of breeding adult offspring produced by a hybrid mating is sufficient to replace the parents. Second, one or the other population may become extinct because of the large number of hybrid matings it is involved in. The likelihood of extinction is lowered if population growth rates are high, if hybrids are inviable rather than infertile, or under some conditions when allopatric populations provide immigrants into the contact zone. Provided hybrid fitness is sufficiently low, there is a wide range of genetic and ecological conditions under which reinforcement rather easily occurs, and also a range under which it may occur because of stochastic effects on both the inheritance parameters and the population sizes.  相似文献   

20.
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise FST between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号