共查询到20条相似文献,搜索用时 15 毫秒
1.
Joel R. Peck David Waxman 《Evolution; international journal of organic evolution》2010,64(11):3300-3309
The earliest organisms are thought to have had high mutation rates. It has been asserted that these high mutation rates would have severely limited the information content of early genomes. This has led to a well‐known “paradox” because, in contemporary organisms, the mechanisms that suppress mutations are quite complex and a substantial amount of information is required to construct these mechanisms. The paradox arises because it is not clear how efficient error‐suppressing mechanisms could have evolved, and thus allowed the evolution of complex organisms, at a time when mutation rates were too high to permit the maintenance of very substantial amounts of information within genomes. Here, we use concepts from the formal theory of information to calculate the amount of genomic information that can be maintained. We identify conditions under which much higher levels of genomic information can be maintained than previously considered possible among origin‐of‐life researchers. In particular, we find that the highest levels of information are maintained when many genotypes produce identical phenotypes, and when reproduction occasionally involves recombination between multiple parental genomes. There is a good reason to believe that these conditions are relevant for very early organisms, and thus the results presented may provide a solution to a long‐standing logical problem associated with the early evolution of life. 相似文献
2.
Eugenio Lpez‐Cortegano Andrs Prez‐Figueroa Armando Caballero 《Molecular ecology resources》2019,19(4):1095-1100
Management programmes often have to make decisions based on the analysis of the genetic properties and diversity of populations. Expected heterozygosity (or gene diversity) and population structure parameters are often used to make recommendations for conservation, such as avoidance of inbreeding or migration across subpopulations. Allelic diversity, however, can also provide complementary and useful information for conservation programmes, as it is highly sensitive to population bottlenecks, and is more related to long‐term selection response than heterozygosity. Here we present a completely revised and updated re‐implementation of the software metapop for the analysis of diversity in subdivided populations, as well as a tool for the management and dynamic estimation of optimal contributions in conservation programmes. This new update includes computation of allelic diversity for population analysis and management, as well as a simulation mode to forecast the consequences of taking different management strategies over time. Furthermore, the new implementation in C++ includes code optimization and improved memory usage, allowing for fast analysis of large data sets including single nucleotide polymorphism markers, as well as enhanced cross‐software and cross‐platform compatibility. 相似文献
3.
Sebastian Matuszewski Joachim Hermisson Michael Kopp 《Evolution; international journal of organic evolution》2014,68(9):2571-2588
Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive‐walk approximation,” which is checked against individual‐based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. 相似文献
4.
Shane R. T. Smith Tim Connallon 《Evolution; international journal of organic evolution》2017,71(5):1417-1424
Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex‐biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations—including the correlation of mutant fitness effects between the sexes—on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness. 相似文献
5.
Jason G. Bragg Peter Cuneo Ahamad Sherieff Maurizio Rossetto 《Molecular ecology resources》2020,20(1):54-65
Translocations of threatened species can reduce the risk of extinction from a catastrophic event. For plants, translocation consists of moving individuals, seeds, or cuttings from a native (source) population to a new site. Ideally a translocation population would be genetically diverse and consist of fit founding individuals. In practice, there are challenges to designing such a population, including constraints on the availability of material, and tradeoffs between different goals. Here, we present an approach for designing a translocation population that identifies sets of founders that are optimized according to multiple criteria (e.g., genetic diversity), while also conforming to constraints on the representation of different founders (e.g., propagation success). It uses flexible inputs, including SNP genotypes, matrices of similarity between individuals, and vectors of phenotype data. We apply the approach to a critically endangered plant, Hibbertia puberula subsp. glabrescens (Dilleniaceae), which was genotyped at thousands of SNP loci. The goals of minimizing genetic similarity among the founding individuals and maximizing genetic diversity were largely complementary: populations optimized for one of these criteria were near‐optimal for the other. We also performed analyses in which we minimized genetic similarity among founding individuals while imposing selection (against hypothetical deleterious alleles, and against undesirable phenotypes, respectively), and here characterized sharp tradeoffs. This was useful in allowing the benefits of selection to be weighed against costs in terms of genetic similarity. In summary, we present an approach for designing a translocation population that allows flexible inputs, the imposition of realistic constraints, and examination of conflicting goals. 相似文献
6.
Abstract Mating systems of 18 species of homosporous ferns follow a bimodal distribution, similar to that observed for seed plants (Schemske and Lande, 1985). Most species are highly outcrossing, a few are inbreeding, and two species examined to date have mixed mating systems. Equisetum arvense and several species of lycopods are also highly outcrossing. Several mechanisms, including inbreeding depression, antheridiogen, and ontogenetic sequences that result in effectively unisexual gametophytes, promote outcrossing in homosporous ferns and perhaps other homosporous pteridophytes as well. In some species of homosporous ferns, selection has favored the evolution of inbreeding as an adaptation for colonization. High levels of intra- and interpopulational gene flow via spore dispersal, coupled with high levels of intergametophytic crossing, generally lead to genetically homogeneous populations and species of homosporous ferns. However, rock-dwelling ferns and ferns from xeric habitats may exhibit significant population genetic structure due to physically patchy habitats. Reticulate evolution in homosporous ferns may be enhanced by high levels of intergametophytic crossing. 相似文献
7.
Jeremy A. Draghi Joshua B. Plotkin 《Evolution; international journal of organic evolution》2013,67(11):3120-3131
The contribution to an organism's phenotype from one genetic locus may depend upon the status of other loci. Such epistatic interactions among loci are now recognized as fundamental to shaping the process of adaptation in evolving populations. Although little is known about the structure of epistasis in most organisms, recent experiments with bacterial populations have concluded that antagonistic interactions abound and tend to deaccelerate the pace of adaptation over time. Here, we use the NK model of fitness landscapes to examine how natural selection biases the mutations that substitute during evolution based on their epistatic interactions. We find that, even when beneficial mutations are rare, these biases are strong and change substantially throughout the course of adaptation. In particular, epistasis is less prevalent than the neutral expectation early in adaptation and much more prevalent later, with a concomitant shift from predominantly antagonistic interactions early in adaptation to synergistic and sign epistasis later in adaptation. We observe the same patterns when reanalyzing data from a recent microbial evolution experiment. These results show that when the order of substitutions is not known, standard methods of analysis may suggest that epistasis retards adaptation when in fact it accelerates it. 相似文献
8.
Watson RA Weinreich DM Wakeley J 《Evolution; international journal of organic evolution》2011,65(2):523-536
We examine the behavior of sexual and asexual populations in modular multipeaked fitness landscapes and show that sexuals can systematically reach different, higher fitness adaptive peaks than asexuals. Whereas asexuals must move against selection to escape local optima, sexuals reach higher fitness peaks reliably because they create specific genetic variants that \"skip over\" fitness valleys, moving from peak to peak in the fitness landscape. This occurs because recombination can supply combinations of mutations in functional composites or \"modules,\" that may include individually deleterious mutations. Thus when a beneficial module is substituted for another less-fit module by sexual recombination it provides a genetic variant that would require either several specific simultaneous mutations in an asexual population or a sequence of individual mutations some of which would be selected against. This effect requires modular genomes, such that subsets of strongly epistatic mutations are tightly physically linked. We argue that such a structure is provided simply by virtue of the fact that genomes contain many genes each containing many strongly epistatic nucleotides. We briefly discuss the connections with \"building blocks\" in the evolutionary computation literature. We conclude that there are conditions in which sexuals can systematically evolve high-fitness genotypes that are essentially unevolvable for asexuals. 相似文献
9.
Sarah P. Hammarlund Brian D. Connelly Katherine J. Dickinson Benjamin Kerr 《Evolution; international journal of organic evolution》2016,70(6):1376-1385
The evolution of cooperation—costly behavior that benefits others—faces one clear obstacle. Namely, cooperators are always at a competitive disadvantage relative to defectors, individuals that reap the benefits, but evade the cost of cooperation. One solution to this problem involves genetic hitchhiking, where the allele encoding cooperation becomes linked to a beneficial mutation, allowing cooperation to rise in abundance. Here, we explore hitchhiking in the context of adaptation to a stressful environment by cooperators and defectors with spatially limited dispersal. Under such conditions, clustered cooperators reach higher local densities, thereby experiencing more mutational opportunities than defectors. Thus, the allele encoding cooperation has a greater probability of hitchhiking with alleles conferring stress adaptation. We label this probabilistic enhancement the “Hankshaw effect” after the character Sissy Hankshaw, whose anomalously large thumbs made her a singularly effective hitchhiker. Using an agent‐based model, we reveal a broad set of conditions that allow the evolution of cooperation through this effect. Additionally, we show that spite, a costly behavior that harms others, can evolve by the Hankshaw effect. While in an unchanging environment these costly social behaviors have transient success, in a dynamic environment, cooperation and spite can persist indefinitely. 相似文献
10.
Richard Moxon Edo Kussell 《Evolution; international journal of organic evolution》2017,71(12):2803-2816
Microbial pathogens and viruses can often maintain sufficient population diversity to evade a wide range of host immune responses. However, when populations experience bottlenecks, as occurs frequently during initiation of new infections, pathogens require specialized mechanisms to regenerate diversity. We address the evolution of such mechanisms, known as stochastic phenotype switches, which are prevalent in pathogenic bacteria. We analyze a model of pathogen diversification in a changing host environment that accounts for selective bottlenecks, wherein different phenotypes have distinct transmission probabilities between hosts. We show that under stringent bottlenecks, such that only one phenotype can initiate new infections, there exists a threshold stochastic switching rate below which all pathogen lineages go extinct, and above which survival is a near certainty. We determine how quickly stochastic switching rates can evolve by computing a fitness landscape for the evolutionary dynamics of switching rates, and analyzing its dependence on both the stringency of bottlenecks and the duration of within‐host growth periods. We show that increasing the stringency of bottlenecks or decreasing the period of growth results in faster adaptation of switching rates. Our model provides strong theoretical evidence that bottlenecks play a critical role in accelerating the evolutionary dynamics of pathogens. 相似文献
11.
Brent E. Allman Daniel B. Weissman 《Evolution; international journal of organic evolution》2018,72(4):722-734
Selective sweeps reduce neutral genetic diversity. In sexual populations, this “hitchhiking” effect is thought to be limited to the local genomic region of the sweeping allele. While this is true in panmictic populations, we find that in spatially extended populations the combined effects of many unlinked sweeps can affect patterns of ancestry (and therefore neutral genetic diversity) across the whole genome. Even low rates of sweeps can be enough to skew the spatial locations of ancestors such that neutral mutations that occur in an individual living outside a small region in the center of the range have virtually no chance of fixing in the population. The fact that nearly all ancestry rapidly traces back to a small spatial region also means that relatedness between individuals falls off very slowly as a function of the spatial distance between them. 相似文献
12.
Céline Becquet Molly Przeworski 《Evolution; international journal of organic evolution》2009,63(10):2547-2562
How often do the early stages of speciation occur in the presence of gene flow? To address this enduring question, a number of recent papers have used computational approaches, estimating parameters of simple divergence models from multilocus polymorphism data collected in closely related species. Applications to a variety of species have yielded extensive evidence for migration, with the results interpreted as supporting the widespread occurrence of parapatric speciation. Here, we conduct a simulation study to assess the reliability of such inferences, using a program that we recently developed MCMC estimation of the isolation‐migration model allowing for recombination (MIMAR) as well as the program isolation‐migration (IM) of Hey and Nielsen (2004) . We find that when one of many assumptions of the isolation–migration model is violated, the methods tend to yield biased estimates of the parameters, potentially lending spurious support for allopatric or parapatric divergence. More generally, our results highlight the difficulty in drawing inferences about modes of speciation from the existing computational approaches alone. 相似文献
13.
Aurora García‐Dorado 《Evolution; international journal of organic evolution》2017,71(5):1381-1389
I present analytical predictions for the equilibrium inbreeding load expected in a population under mutation, selection, and a regular mating system for any population size and for any magnitude and recessivity of the deleterious effects. Using this prediction, I deduce the relative fitness of mutant alleles with small effect on selfing to explore the situations where selfing or outcrossing are expected to evolve. The results obtained are in agreement with previous literature, showing that natural selection is expected to lead to stable equilibria where populations show either complete outcrossing or complete selfing, and that selfing is promoted by large deleterious mutation rates. I find that the evolution of selfing is favored by a large recessivity of deleterious effects, while the magnitude of homozygous deleterious effects only becomes relevant in relatively small populations. This result contradicts the standard assumption that purging in large populations will only promote selfing when homozygous deleterious effects are large, and implies that previously published results obtained assuming lethal mutations in large populations can be extrapolated to nonlethal alleles of similar recessivity. This conclusion and the general approach used in this analysis can be useful in the study of the evolution of mating systems. 相似文献
14.
Hugo Darras Laurianne Leniaud Serge Aron 《Proceedings. Biological sciences / The Royal Society》2014,281(1774)
Recently, a unique case of hybridogenesis at a social level was reported in local populations of the desert ants Cataglyphis. Queens mate with males originating from a different genetic lineage than their own to produce hybrid workers, but they use parthenogenesis for the production of reproductive offspring (males and females). As a result, non-reproductive workers are all inter-lineage hybrids, whereas the sexual line is purely maternal. Here, we show that this unorthodox reproductive system occurs in all populations of the ant Cataglyphis hispanica. Remarkably, workers are hybrids of the same two genetic lineages along a 400 km transect crossing the whole distribution range of the species. These results indicate that social hybridogenesis in C. hispanica allows their maintenance over time and across a large geographical scale of two highly divergent genetic lineages, despite their constant hybridization. The widespread distribution of social hybridogenesis in C. hispanica supports that this reproductive strategy has been evolutionarily conserved over a long period. 相似文献
15.
16.
Samuel J. Tazzyman Sebastian Bonhoeffer 《Evolution; international journal of organic evolution》2014,68(7):2066-2078
Antibiotic resistance provides evolutionary rescue for bacterial populations under the threat of extinction through antibiotics. It can arise de novo through mutation in the population, or be obtained from other bacterial populations via the transfer of a resistance‐conferring plasmid. We use stochastic modeling methods to establish whether the most likely source of rescue is via a plasmid or via the chromosome, and show that contrary to what is assumed plasmids are not necessarily beneficial locations for resistance genes. Competition at the plasmid level of selection is of great importance—the spread of a resistant plasmid in the population can be slowed or entirely stopped by a nonresistant version of the same plasmid. We suggest that future studies on antibiotic‐resistant plasmids should explicitly consider competition at this level of selection. 相似文献
17.
Marta Szulkin Nicolas Bierne Patrice David 《Evolution; international journal of organic evolution》2010,64(5):1202-1217
Owing to the remarkable progress of molecular techniques, heterozygosity‐fitness correlations (HFCs) have become a popular tool to study the impact of inbreeding in natural populations. However, their underlying mechanisms are often hotly debated. Here we argue that these “debates” rely on verbal arguments with no basis in existing theory and inappropriate statistical testing, and that it is time to reconcile HFC with its historical and theoretical fundaments. We show that available data are quantitatively and qualitatively consistent with inbreeding‐based theory. HFC can be used to estimate the impact of inbreeding in populations, although such estimates are bound to be imprecise, especially when inbreeding is weak. Contrary to common belief, linkage disequilibrium is not an alternative to inbreeding, but rather comes with some forms of inbreeding, and is not restricted to closely linked loci. Finally, the contribution of local chromosomal effects to HFC, while predicted by inbreeding theory, is expected to be small, and has rarely if ever proven statistically significant using adequate tests. We provide guidelines to safely interpret and quantify HFCs, and present how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations. 相似文献
18.
Natural populations must constantly adapt to ever‐changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these “genetic distances.” As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright–Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. 相似文献
19.
Luca Sciuchetti Christophe Dufresnes Elisa Cavoto Alan Brelsford Nicolas Perrin 《Evolution; international journal of organic evolution》2018,72(7):1350-1361
Dobzhansky–Muller (DM) incompatibilities involving sex chromosomes have been proposed to account for Haldane's rule (lowered fitness among hybrid offspring of the heterogametic sex) as well as Darwin's corollary (asymmetric fitness costs with respect to the direction of the cross). We performed simulation studies of a hybrid zone to investigate the effects of different types of DM incompatibilities on cline widths and positions of sex‐linked markers. From our simulations, X‐Y incompatibilities generate steep clines for both X‐linked and Y‐linked markers; random effects may produce strong noise in cline center positions when migration is high relative to fitness costs, but X‐ and Y‐centers always coincide strictly. X‐autosome and Y‐autosome incompatibilities also generate steep clines, but systematic shifts in cline centers occur when migration is high relative to selection, as a result of a dominance drive linked to Darwin's corollary. Interestingly, sex‐linked genes always show farther introgression than the associated autosomal genes. We discuss ways of disentangling the potentially confounding effects of sex biases in migration, we compare our results to those of a few documented contact zones, and we stress the need to study independent replicates of the same contact zone. 相似文献
20.
K. Petren 《Evolution; international journal of organic evolution》2013,67(12):3383-3385
The main objective of this special section is not to review the broad field of landscape genetics, but to provide a glimpse of how the developing landscape genetics perspective has the potential to change the way we study evolution. Evolutionary landscape genetics is the study of how migration and population structure affects evolutionary processes. As a field it dates back to Sewall Wright and the origin of theoretical population genetics, but empirical tests of adaptive processes of evolution in natural landscapes have been rare. Now, with recent developments in technology, methodology, and modeling tools, we are poised to trace adaptive genetic variation across space and through time. Not only will we see more empirical tests of classical theory, we can expect to see new phenomena emerging, as we reveal complex interactions among evolutionary processes as they unfold in natural landscapes. 相似文献