首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A classic question in evolutionary biology is how form–function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity—the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form–function systems.  相似文献   

2.
Morphological diversity is routinely used to infer ecological variation among species because differences in form underlie variation in functional performance of ecological tasks like capturing prey, avoiding predators, or defending territories. However, many functions have complex morphological bases that can weaken associations between morphological and functional diversification. We investigate the link between these levels of diversity in a mechanically explicit model of fish suction-feeding performance, where the map of head morphology to feeding mechanics is many-to-one: multiple, alternative forms can produce the same mechanical property. We show that many-to-one mapping leads to discordance between morphological and mechanical diversity in the freshwater fish family, the Centrarchidae, despite close associations between morphological changes and their mechanical effects. We find that each of the model's five morphological variables underlies evolution of suction capacity. Yet, the major centrarchid clades exhibit an order of magnitude range in diversity of suction mechanics in the absence of any clear difference in diversity of the morphological variables. This cryptic pattern of mechanical diversity suggests an evolutionary history for suction performance that is unlike the one inferred from comparisons of morphological diversity. Because many-to-one mapping is likely to be common in functional systems, this property of design may lead to widespread discordance between functional and morphological diversity. Although we focus on the interaction between morphology and mechanics, many-to-one mapping can decouple diversity between levels of organization in any hierarchical system.  相似文献   

3.
Biomechanical models offer a powerful set of tools for quantifying the diversity of function across fossil taxa. A computer‐based four‐bar linkage model previously developed to describe the potential feeding kinematics of Dunkleosteus terrelli is applied here to several other arthrodire placoderm taxa from different lineages. Arthrodire placoderms are a group of basal gnathostomes showing one of the earliest diversifications of jaw structures. The linkage model allows biomechanical variation to be compared across taxa, identify trends in skull morphology among arthrodires that potentially influence function and explore the role of linkage systems in the early evolution of jaw structures. The linkage model calculates various kinematic metrics including gape angle, effective mechanical advantage, and kinematic transmission coefficients. Results indicate that the arthrodire feeding system may be more diverse and complex than previously thought. A range of potential kinematic profiles among arthrodire taxa illustrate a diversity of feeding function comparable with modern teleost fishes. Previous estimates of bite force in Dunkleosteus are revised based on new morphological data. High levels of kinematic transmission among arthrodires suggest the potential for rapid gape expansion and possible suction feeding. Morphological comparisons indicate that there were several morphological solutions for obtaining these fast kinematics, which allowed different taxa to achieve similar kinematic profiles while varying other aspects of the feeding apparatus. Mapping of key morphological components of the linkage system on a general placoderm phylogeny illustrates the potential importance of four‐bar systems to the early evolution of jaw structures. J. Morphol. 271:990–1005, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: “many‐to‐one mapping.” Many‐to‐one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many‐to‐one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake‐ and stream‐adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form‐to‐function relationship from one‐to‐one (lower jaw lever ratio) to increasingly many‐to‐one (buccal suction index, opercular 4‐bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake‐stream pairs, in the many‐to‐one systems relative to the one‐to‐one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many‐to‐one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist.  相似文献   

5.
The relationship between form and function can have profound effects on evolutionary dynamics and such effects may differ for simple versus complex systems. In particular, functions produced by multiple structural configurations (many‐to‐one mapping, MTOM) may dampen constituent trade‐offs and promote diversification. Unfortunately, we lack information about the genetic architecture of MTOM functional systems. The skulls of teleost fishes contain both simple (lower jaw levers) as well as more complex (jaws modeled as 4‐bar linkages) functional systems within the same craniofacial unit. We examined the mapping of form to function and the genetic basis of these systems by identifying quantitative trait loci (QTL) in hybrids of two Lake Malawi cichlid species. Hybrid individuals exhibited novelty (transgressive segregation) in morphological components and function of the simple and complex jaw systems. Functional novelty was proportional to the prevalence of extreme morphologies in the simple levers; by contrast, recombination of parental morphologies produced transgression in the MTOM 4‐bar linkage. We found multiple loci of moderate effect and epistasis controlling jaw phenotypes in both the simple and complex systems, with less phenotypic variance explained by QTL for the 4‐bar. Genetic linkage between components of the simple and complex systems partly explains phenotypic correlations and may constrain functional evolution.  相似文献   

6.
Many musculoskeletal systems, including the skulls of birds, fishes, and some lizards consist of interconnected chains of mobile skeletal elements, analogous to linkage mechanisms used in engineering. Biomechanical studies have applied linkage models to a diversity of musculoskeletal systems, with previous applications primarily focusing on two‐dimensional linkage geometries, bilaterally symmetrical pairs of planar linkages, or single four‐bar linkages. Here, we present new, three‐dimensional (3D), parallel linkage models of the skulls of birds and fishes and use these models (available as free kinematic simulation software), to investigate structure–function relationships in these systems. This new computational framework provides an accessible and integrated workflow for exploring the evolution of structure and function in complex musculoskeletal systems. Linkage simulations show that kinematic transmission, although a suitable functional metric for linkages with single rotating input and output links, can give misleading results when applied to linkages with substantial translational components or multiple output links. To take into account both linear and rotational displacement we define force mechanical advantage for a linkage (analogous to lever mechanical advantage) and apply this metric to measure transmission efficiency in the bird cranial mechanism. For linkages with multiple, expanding output points we propose a new functional metric, expansion advantage, to measure expansion amplification and apply this metric to the buccal expansion mechanism in fishes. Using the bird cranial linkage model, we quantify the inaccuracies that result from simplifying a 3D geometry into two dimensions. We also show that by combining single‐chain linkages into parallel linkages, more links can be simulated while decreasing or maintaining the same number of input parameters. This generalized framework for linkage simulation and analysis can accommodate linkages of differing geometries and configurations, enabling novel interpretations of the mechanics of force transmission across a diversity of vertebrate feeding mechanisms and enhancing our understanding of musculoskeletal function and evolution. J. Morphol. 277:1570–1583, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Mechanical redundancy within a biomechanical system (e.g., many‐to‐one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four‐bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods—“smashers” (hammer‐shaped appendages) and “spearers” (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy.  相似文献   

8.
Although the mathematical principles underpinning population-level evolution are now well studied, the origin and evolution of morphological novelties has received far less attention. Here, a broad but general theory for how this sort of change takes place is outlined, relying on functional continuity, least-constrained components of morphology, redundancy and preadaptation. At least four distinct sorts of redundancy are identified: (i) redundancy arising through duplication (amplification); (ii) redundancy arising through regionalisation (parcellation); (iii) redundancy arising through functional convergence; and (iv) redundancy arising from shared function (functional degeneracy). Although organisms are here recognised to be functionally constrained ("burdened", in Riedl's terminology), these constraints can be overcome through the combination of the four principles given above. Contrary to its common treatment, functional constraint is neither an ever-increasing restriction on the scope of evolution, nor does it require drastic events to overcome or "break" it. Rather, it is an evolutionary quantity, subject to selection at some level. The rules that govern morphological evolution are the primary controls on what is allowed to happen in the evolution of the overall genotype-phenotype system, suggesting strong controls on the sorts of developmental changes that might be associated with macroevolution. This model, then, sees organism functionality as the primary control on evolvability, with exact genetic make-up being of secondary importance. It should prove possible to recast traditional notions of body-plan evolution into the formulations of complex system analysis, which in the future may prove a unifying discipline for fields as disparate as palaeontology and gene regulatory networks. In particular, understanding how morphology can evolve may provide the critical link between the ecological and morphological networks that are currently the intense focus of evolutionary investigations.  相似文献   

9.
We introduce the concept of many-to-one mapping of form to functionand suggest that this emergent property of complex systems promotesthe evolution of physiological diversity. Our work has focusedon a 4-bar linkage found in labrid fish jaws that transmitsmuscular force and motion from the lower jaw to skeletal elementsin the upper jaws. Many different 4-bar shapes produce the sameamount of output rotation in the upper jaw per degree of lowerjaw rotation, a mechanical property termed Maxillary KT. Weillustrate three consequences of many-to-one mapping of 4-barshape to Maxillary KT. First, many-to-one mapping can partiallydecouple morphological and mechanical diversity within clades.We found with simulations of 4-bars evolving on phylogeniesof 500 taxa that morphological and mechanical diversity wereonly loosely correlated (R2 = 0.25). Second, redundant mappingpermits the simultaneous optimization of more than one mechanicalproperty of the 4-bar. Labrid fishes have capitalized on thisflexibility, as illustrated by several species that have MaxillaryKT = 0.8 but have different values of a second property, NasalKT. Finally, many-to-one mapping may increase the influenceof historical factors in determining the evolution of morphology.Using a genetic model of 4-bar evolution we exerted convergentselection on three different starting 4-bar shapes and foundthat mechanical convergence only created morphological convergencein simulations where the starting forms were similar. Many-to-onemapping is widespread in physiological systems and operatesat levels ranging from the redundant mapping of genotypes tophenotypes, up to the morphological basis of whole-organismperformance. This phenomenon may be involved in the uneven distributionof functional diversity seen among animal lineages.  相似文献   

10.
An extensive body of research has recently demonstrated patterns of parallel and/or convergent evolution that arise from divergent natural selection pressures exerted across environmental gradients. These studies, although providing some of our best empirical evidence for natural selection, have focused on rather narrow phylogenetic scopes, more often than not comparing patterns of morphological change among closely‐related taxa within a single genus. Organisms in replicated populations in these studies are often assumed to have accomplished convergence via similar underlying processes. However, such assumptions cannot be made when looking at evolution across broader phylogenetic and ecological spectra. In the present study, we assessed morphological change across a much broader scale to test whether similar evolutionary and developmental patterns underlie convergence. Specifically, we studied morphological change that has occurred in a novel lake environment (Lake Waccamaw, North Carolina, USA) where three phylogenetically‐disparate fishes representing different orders have speciated and independently evolved streamlined morphologies relative to their deeper‐bodied progenitors occupying nearby streams and coastal regions. Geometric morphometric analyses revealed that, although the bulk of shape change between environments is similar across taxa, significant species‐specific responses, concordant with differing expectations based on the ecologies of these taxa, were also found. Moreover, allometry analyses indicated that the developmental patterns underlying this change also differ across taxa. The present study provides evidence that, within a common environment, convergence can be achieved by different evolutionary and developmental patterns in phylogenetically‐ and ecologically‐disparate taxa. Finally, these results contradict the commonly‐held hypothesis that fishes should be more streamlined in streams than lakes and emphasize the need to also consider other environmental characteristics, such as water clarity and physical complexity, in studies of divergence. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 636–645.  相似文献   

11.
Molecular clock methods allow biologists to estimate divergence times, which in turn play an important role in comparative studies of many evolutionary processes. It is well known that molecular age estimates can be biased by heterogeneity in rates of molecular evolution, but less attention has been paid to the issue of potentially erroneous fossil calibrations. In this study we estimate the timing of diversification in Centrarchidae, an endemic major lineage of the diverse North American freshwater fish fauna, through a new approach to fossil calibration and molecular evolutionary model selection. Given a completely resolved multi-gene molecular phylogeny and a set of multiple fossil-inferred age estimates, we tested for potentially erroneous fossil calibrations using a recently developed fossil cross-validation. We also used fossil information to guide the selection of the optimal molecular evolutionary model with a new fossil jackknife method in a fossil-based model cross-validation. The centrarchid phylogeny resulted from a mixed-model Bayesian strategy that included 14 separate data partitions sampled from three mtDNA and four nuclear genes. Ten of the 31 interspecific nodes in the centrarchid phylogeny were assigned a minimal age estimate from the centrarchid fossil record. Our analyses identified four fossil dates that were inconsistent with the other fossils, and we removed them from the molecular dating analysis. Using fossil-based model cross-validation to determine the optimal smoothing value in penalized likelihood analysis, and six mutually consistent fossil calibrations, the age of the most recent common ancestor of Centrarchidae was 33.59 million years ago (mya). Penalized likelihood analyses of individual data partitions all converged on a very similar age estimate for this node, indicating that rate heterogeneity among data partitions is not confounding our analyses. These results place the origin of the centrarchid radiation at a time of major faunal turnover as the fossil record indicates that the most diverse lineages of the North American freshwater fish fauna originated at the Eocene-Oligocene boundary, approximately 34 mya. This time coincided with major global climate change from warm to cool temperatures and a signature of elevated lineage extinction and origination in the fossil record across the tree of life. Our analyses demonstrate the utility of fossil cross-validation to critically assess individual fossil calibration points, providing the ability to discriminate between consistent and inconsistent fossil age estimates that are used for calibrating molecular phylogenies.  相似文献   

12.
The Labridae (including wrasses, the Odacidae and the Scaridae) is a species‐rich group of perciform fishes whose members are prominent inhabitants of warm‐temperate and tropical reefs worldwide. We analyse functionally relevant morphometrics for the feeding apparatus of 130 labrid species found on the Great Barrier Reef and use these data to explore the morphological and mechanical basis of trophic diversity found in this assemblage. Morphological measurements were made that characterize the functional and mechanical properties of the oral jaws that are used in prey capture and handling, the hyoid apparatus that is used in expanding the buccal cavity during suction feeding, and the pharyngeal jaw apparatus that is used in breaking through the defences of shelled prey, winnowing edible matter from sand and other debris, and pulverizing the algae, detritus and rock mixture eaten by scarids (parrotfishes). A Principal Components Analysis on the correlation matrix of a reduced set of ten variables revealed complete separation of scarids from wrasses on the basis of the former having a small mouth with limited jaw protrusion, high mechanical advantage in jaw closing, and a small sternohyoideus muscle and high kinematic transmission in the hyoid four‐bar linkage. Some scarids also exhibit a novel four‐bar linkage conformation in the oral jaw apparatus. Within wrasses a striking lack of strong associations was found among the mechanical elements of the feeding apparatus. These weak associations resulted in a highly diverse system in which functional properties occur in many different combinations and reflect variation in feeding ecology. Among putatively monophyletic groups of labrids, the cheilines showed the highest functional diversity and scarids were moderately diverse, in spite of their reputation for being trophically monomorphic and specialized. We hypothesize that the functional and ecological diversity of labrids is due in part to a history of decoupled evolution of major components of the feeding system (i.e. oral jaws, hyoid and pharyngeal jaw apparatus) as well as among the muscular and skeletal elements of each component. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 1–25.  相似文献   

13.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

14.
The dynamic interplay among structure, function, and phylogeny form a classic triad of influences on the patterns and processes of biological diversification. Although these dynamics are widely recognized as important, quantitative analyses of their interactions have infrequently been applied to biomechanical systems. Here we analyze these factors using a fundamental biomechanical mechanism: power amplification. Power‐amplified systems use springs and latches to generate extremely fast and powerful movements. This study focuses specifically on the power amplification mechanism in the fast raptorial appendages of mantis shrimp (Crustacea: Stomatopoda). Using geometric morphometric and phylogenetic comparative analyses, we measured evolutionary modularity and rates of morphological evolution of the raptorial appendage's biomechanical components. We found that “smashers” (hammer‐shaped raptorial appendages) exhibit lower modularity and 10‐fold slower rates of morphological change when compared to non‐smashers (spear‐shaped or undifferentiated appendages). The morphological and biomechanical integration of this system at a macroevolutionary scale and the presence of variable rates of evolution reveal a balance between structural constraints, functional variation, and the “roles of development and genetics” in evolutionary diversification.  相似文献   

15.
A fundamental goal of evolutionary ecology is understanding the processes responsible for contemporary patterns of morphological diversity and species richness. Transitions across the marine–freshwater interface are regarded as key triggers for adaptive radiation of many clades. Using the Australian terapontid fish family as a model system we employed phylogenetic analyses to compare the rates of ecological (dietary) and morphological evolution between marine and freshwater species of the family. Results suggested significantly higher rates of phenotypic evolution in key dietary and morphological characters in freshwater species compared to marine counterparts. Moreover, there was significant correlation between several of these dietary and morphological characters, suggesting an underlying ecomorphological aspect to these greater rates of phenotypic evolution in freshwater clades. Australia’s biogeographic history, which has precluded colonisation by many of the major ostariophysan fish families that make up much global freshwater fish diversity, appears to have provided the requisite ‘ecological opportunity’ to facilitate the radiation of invading marine-derived fish clades.  相似文献   

16.
The interplay between evolutionary rates and modularity influences the evolution of organismal body plans by both promoting and constraining the magnitude and direction of trait response to ecological conditions. However, few studies have examined whether the best‐fit hypothesis of modularity is the same as the shape subset with the greatest difference in evolutionary rate. Here, we develop a new phylogenetic comparative method for comparing evolutionary rates among high‐dimensional traits, and apply this method to analyze body shape evolution in bioluminescent lanternfishes. We frame the study of evolutionary rates and modularity through analysis of three hypotheses derived from the literature on fish development, biomechanics, and bioluminescent communication. We show that a development‐informed partitioning of shape exhibits the greatest evolutionary rate differences among modules, but that a hydrodynamically informed partitioning is the best‐fit modularity hypothesis. Furthermore, we show that bioluminescent lateral photophores evolve at a similar rate as, and are strongly integrated with, body shape in lanternfishes. These results suggest that overlapping life‐history constraints on development and movement define axes of body shape evolution in lanternfishes, and that the positions of their lateral photophore complexes are likely a passive outcome of the interaction of these ecological pressures.  相似文献   

17.
The development of evolutionary theory requires the resolution of the problem of relationships between random and regular processes in historical development of biological systems. According to the theory of natural selection, ecological factors play a leading role in evolution. Variations are nondirectional, unpredictable, and provide chaotic diversity of variants, only some of which are potentially useful. However, based on random processes, new variants that are useful for organisms and remain adaptive significance in various ecological situations are infrequent. At the same time, morphology demonstrates certain evolutionary patterns. The morphological approach takes into account the role in evolution of structural features of organism and social systems and evolutionary significance of “constructive technologies,” which distinguish morphological interpretation of evolutionary processes. The constructive and evolutionary patterns revealed in biological systems provide the basis for morphological interpretation of the principle of natural selection: both natural and artificial selection is interaction between social systems (populations, ecosystems, biogeocoenoses) and organisms composing them.  相似文献   

18.
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.  相似文献   

19.
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation (V&V). The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of V&V principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques.  相似文献   

20.
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号