首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic sexual dichromatism is a temporary colour change between the sexes and has evolved independently in a wide range of anurans, many of which are explosive breeders wherein males physically compete for access to females. Behavioural studies in a few species indicate that dynamic dichromatism functions as a visual signal in large breeding aggregations; however, the prevalence of this trait and the social and environmental factors underlying its expression are poorly understood. We compiled a database of 178 anurans with dynamic dichromatism that include representatives from 15 families and subfamilies. Dynamic dichromatism is common in two of the three subfamilies of hylid treefrogs. Phylogenetic comparative analyses of 355 hylid species (of which 95 display dynamic dichromatism) reveal high transition rates between dynamic dichromatism, ontogenetic (permanent) dichromatism and monochromatism reflecting the high evolutionary lability of this trait. Correlated evolution in hylids between dynamic dichromatism and forming large breeding aggregations indicates that the evolution of large breeding aggregations precedes the evolution of dynamic dichromatism. Multivariate phylogenetic logistic regression recovers the interaction between biogeographic distribution and forming breeding aggregations as a significant predictor of dynamic dichromatism in hylids. Accounting for macroecological differences between temperate and tropical regions, such as seasonality and the availability of breeding sites, may improve our understanding of ecological contexts in which dynamic dichromatism is likely to arise in tropical lineages and why it is retained in some temperate species and lost in others.  相似文献   

2.
Birds in which both sexes produce complex songs are thought to be more common in the tropics than in temperate areas, where typically only males sing. Yet the role of phylogeny in this apparent relationship between female song and latitude has never been examined. Here, we reconstruct evolutionary changes in female song and breeding latitude in the New World blackbirds (Icteridae), a family with both temperate and tropical representatives. We provide strong evidence that members of this group have moved repeatedly from tropical to temperate breeding ranges and, furthermore, that these range shifts were associated with losses of female song more often than expected by chance. This historical perspective suggests that male-biased song production in many temperate species is the result not of sexual selection for complex song in males but of selection against such songs in females. Our results provide new insights into the differences we see today between tropical and temperate songbirds, and suggest that the role of sexual selection in the evolution of bird song might not be as simple as we think.  相似文献   

3.
The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades.  相似文献   

4.
5.
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.  相似文献   

6.
Climatic zonation drives latitudinal variation in speciation mechanisms   总被引:2,自引:0,他引:2  
Many groups of organisms show greater species richness in the tropics than in the temperate zone, particularly in tropical montane regions. Forty years ago, Janzen suggested that more limited temperature seasonality in the tropics leads to greater climatic zonation and more climatic barriers to organismal dispersal along elevational gradients in the tropics relative to temperate regions. These factors could lead to differences in how species arise in tropical versus temperate regions and possibly contribute to greater tropical diversity. However, no studies have compared the relationships among climate, elevational distribution and speciation in a group inhabiting both tropical and temperate regions. Here, we compare elevational and climatic divergence among 30 sister-species pairs (14 tropical, 16 temperate) within a single family of salamanders (Plethodontidae) that reaches its greatest species richness in montane Mesoamerica. In support of Janzen's hypothesis, we find that sister species are more elevationally and climatically divergent in the tropics than in the temperate zone. This pattern seemingly reflects regional variation in the role of climate in speciation, with niche conservatism predominating in the temperate zone and niche divergence in the tropics. Our study demonstrates how latitudinal differences in elevational climatic zonation may increase opportunities for geographical isolation, speciation and the associated build-up of species diversity in the tropics relative to the temperate zone.  相似文献   

7.
Male golden-collared manakins gather on leks and perform an acrobatic display to attract females. In temperate breeding species, testosterone (T) activation of courtship displays has been well studied. Few studies have examined T activation of displays in tropical species; even fewer have explored the activational role of T in elaborate courtship displays such as in the manakin. In some tropical species, including manakins, territorial aggression or song behavior are uncoupled from T. We have previously shown that T activates display behavior in manakin males when endogenous T levels are low in the non-courtship season. To understand how T functions in breeding birds, we examined T levels in a large group of manakins sampled during the courtship and non-courtship season. In addition, during the courtship season, we gave T implants to adult males, juvenile males, and females. We found that T levels were low during the non-courtship season and comparatively higher on average during the courtship season. However, T levels were low in many adult males during the courtship season, especially when compared to temperate breeding species. Regardless of initial endogenous T levels during the courtship season, T implants did not increase the display frequency of adult males. T-treated females and juvenile males did display under similar conditions. Our data suggest that the effects of T on manakin display vary with season, sex, and age and that high T is not necessary for display.  相似文献   

8.
Geographic patterns of species richness ultimately arise through the processes of speciation, extinction, and dispersal, but relatively few studies consider evolutionary and biogeographic processes in explaining these diversity patterns. One explanation for high tropical species richness is that many species-rich clades originated in tropical regions and spread to temperate regions infrequently and more recently, leaving little time for species richness to accumulate there (assuming similar rates of diversification in temperate and tropical regions). However, the major clades of anurans (frogs) and salamanders may offer a compelling counterexample. Most salamander families are predominately temperate in distribution, but the one primarily tropical clade (Bolitoglossinae) contains nearly half of all salamander species. Similarly, most basal clades of anurans are predominately temperate, but one largely tropical clade (Neobatrachia) contains approximately 96% of anurans. In this article, I examine patterns of diversification in frogs and salamanders and their relationship to large-scale patterns of species richness in amphibians. I find that diversification rates in both frogs and salamanders increase significantly with decreasing latitude. These results may shed light on both the evolutionary causes of the latitudinal diversity gradient and the dramatic but poorly explained disparities in the diversity of living amphibian clades.  相似文献   

9.
Why are there more species in the tropics than in temperate regions? In recent years, this long-standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time-for-speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.  相似文献   

10.
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes.  相似文献   

11.
Aim  A latitudinal gradient in species richness, defined as a decrease in biodiversity away from the equator, is one of the oldest known patterns in ecology and evolutionary biology. However, there are also many known cases of increasing poleward diversity, forming inverse latitudinal biodiversity gradients. As only three processes (speciation, extinction and dispersal) can directly affect species richness in areas, similar factors may be responsible for both classical (high tropical diversity) and inverse (high temperate diversity) gradients. Thus, a modified explanation for differential species richness which accounts for both patterns would be preferable to one which only explains high tropical biodiversity.
Location  The New World.
Methods  We test several proposed ecological, temporal, evolutionary and spatial explanations for latitudinal diversity gradients in the New World snake tribe Lampropeltini, which exhibits its highest biodiversity in temperate regions.
Results  We find that an extratropical peak in species richness is not explained by latitudinal variation in diversification rate, the mid-domain effect, or Rapoport's rule. Rather, earlier colonization and longer duration in the temperate zones allowing more time for speciation to increase biodiversity, phylogenetic niche conservatism limiting tropical dispersal and the expansion of the temperate zones in the Tertiary better explain inverse diversity gradients in this group.
Main conclusions  Our conclusions are the inverse of the predictions made by the tropical conservatism hypothesis to explain higher biodiversity near the equator. Therefore, we suggest that the processes invoked are not intrinsic to the tropics but are dependent on historical biogeography to determine the distribution of species richness, which we refer to as the 'biogeographical conservatism hypothesis'.  相似文献   

12.
《Animal behaviour》2004,68(3):453-463
Although many factors have been shown to influence the evolution of species recognition signals in a wide variety of taxa, it is difficult to draw general conclusions because of fundamental differences in the morphologies and ecologies of the animals considered. In this study, two morphologically and ecologically similar lizard genera (Sceloporus and Liolaemus) are used to provide replicate examples of the evolution of a complex visual display. New data on the headbob displays of 16 Liolaemus species are presented. As in other taxa, phylogenetic analyses show that evolutionary changes in display structure have been rapid, leaving little, if any, phylogenetic information in the display structure. Evolutionary changes in display structure also do not appear to be closely associated with any major habitat characteristics. Despite this rapid evolution, Liolaemus lizards produce headbob displays that are remarkably simple in structure in comparison to those produced by Sceloporus, perhaps compensating for lower complexity by frequent use of other visual displays such as forelimb and tail waves.  相似文献   

13.
Global patterns of population genetic differentiation in seed plants   总被引:1,自引:0,他引:1  
Evaluating the factors that drive patterns of population differentiation in plants is critical for understanding several biological processes such as local adaptation and incipient speciation. Previous studies have given conflicting results regarding the significance of pollination mode, seed dispersal mode, mating system, growth form and latitudinal region in shaping patterns of genetic structure, as estimated by FST values, and no study to date has tested their relative importance together across a broad scale. Here, we assembled a 337‐species data set for seed plants from publications with data on FST from nuclear markers and species traits, including variables pertaining to the sampling scheme of each study. We used species traits, while accounting for sampling variables, to perform phylogenetic multiple regressions. Results demonstrated that FST values were higher for tropical, mixed‐mating, non‐woody species pollinated by small insects, indicating greater population differentiation, and lower for temperate, outcrossing trees pollinated by wind. Among the factors we tested, latitudinal region explained the largest portion of variance, followed by pollination mode, mating system and growth form, while seed dispersal mode did not significantly relate to FST. Our analyses provide the most robust and comprehensive evaluation to date of the main ecological factors predicted to drive population differentiation in seed plants, with important implications for understanding the basis of their genetic divergence. Our study supports previous findings showing greater population differentiation in tropical regions and is the first that we are aware of to robustly demonstrate greater population differentiation in species pollinated by small insects.  相似文献   

14.
This paper presents a model that generates testable hypotheses concerning the evolution of long-range migratory behavior in the Monarch Butterfly,Danaus plexippus and the general absence of such behavior in a related form, the Queen,D. gilippus (Lepidoptera: Nymphalidae: Danainae). An attempt is made to reconstruct a probable transition within the Neotropical forest-dwelling danaines associated with woody Asclepiadaceae (and to a lesser extent, perhaps some Apocyanaceae) as larval food plants to a progenitor stock of the Monarch and Queen in more seasonal tropical regions, and eventually temperate regions, and associated with herbaceous asclepiads such asAsclepias. A basic premise of the proposed hypothetical model is that the colonization of secondary habitats in seasonal tropical regions of Central America preadapted both forms to an eventual colonization of the sub-temperate and temperate zone of North America. The assumed evolutionary diversification of the herbaceousAsclepias species in North America provided an evolutionary stepping stone for the expansion of these danaines into this region. Owing to strong selection arising from the co-association of the Monarch and Queen with the same species ofAsclepias in the subtropical region of North America, eventually there was selection for the colonization of the higher latitudes by the Monarch, whereAsclepias thrived. Being essentially a tropical insect, the Monarch evolved an obligatory long-range migratory behavior to allow colonization of the temperate zone annually, and necessitating the use of overwintering sites in Mexico and other places.  相似文献   

15.
Shrimps from the genus Lysmata are known because of their wide diversity of lifestyles, mating systems, symbiotic partnerships, and conspicuous coloration. They can occur in crowds (large aggregations), in small groups, or as socially monogamous pairs. Shrimps from this genus are rare, if not unique among crustaceans, because of their unusual sexual system. To date, the sexual system of all species investigated comprises a protandric simultaneous hermaphroditism: shrimps initially mature and reproduce as males and later in life turn into functional simultaneous hermaphrodites. The evolutionary relationships of the species within the genus are unsettled. A molecular phylogeny of the group may shed light on the evolutionary origins of the peculiar sexual and social systems of these shrimps and help resolve standing taxonomic questions long overdue. Using a 647-bp alignment of the 16S rRNA mitochondrial DNA, we examined the phylogenetic relationship of 21 species of shrimps from the genus Lysmata from several biogeographical regions; the Atlantic, Pacific, and Indo-Pacific. The resulting phylogeny indicates that the genus is paraphyletic and includes the genus Exhippolysmata . The constituent species are subdivided into three well supported clades: one group exclusively composed of neotropical species; a second clade comprising the Indo-Pacific and Atlantic symbiotic fish cleaner shrimps; and a third clade including tropical and temperate species from the Atlantic and Pacific. The molecular phylogeny presented here does not support a historical contingency hypothesis, previously proposed to explain the origins of protandric simultaneous hermaphroditism within the genus. Furthermore, the present study shows that monogamous pair-living is restricted to one monophyletic group of shrimps and therefore probably evolved only once.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 415–424.  相似文献   

16.
In order to attract females, male golden-collared manakins gather in leks and perform a complex display consisting of acrobatics accompanied by loud "wingsnapping". During this display, males show off their yellow beard and yellow, black, and green plumage that is striking in comparison to the dull green plumage of young males and females. We investigated the role of testosterone (T) in activating the display of manakins and in stimulating the growth of the adult male plumage. T regulates song, copulation, and territorial aggression in temperate species. In tropical species, however, T levels can be relatively low year round, which has raised questions about the involvement of T in courtship display and male aggression in these species. In neither temperate nor tropical species has the role of hormones in the shift from juvenile to adult plumage been well studied. Therefore, we implanted green-plumaged birds and adult males with either a T pellet or an inert pellet (controls) and observed the display behaviors of these birds in the field and in captivity. In captive birds, we also plucked feathers from sexually dimorphic regions and observed color and regeneration rate of new feathers. We found that birds implanted with T increased several display behaviors compared to controls. All plucked feathers grew back the same color as prior to treatment; however, we observed some differences in feather growth rate between T-treated birds and controls.  相似文献   

17.
The latitudinal diversity gradient (LDG) is one of the most striking ecological patterns on our planet. Determining the evolutionary causes of this pattern remains a challenging task. To address this issue, previous LDG studies have usually relied on correlations between environmental variables and species richness, only considering evolutionary processes indirectly. Instead, we use a phylogenetically integrated approach to investigate the ecological and evolutionary processes responsible for the global LDG observed in swallowtail butterflies (Papilionidae). We find evidence for the 'diversification rate hypothesis' with different diversification rates between two similarly aged tropical and temperate clades. We conclude that the LDG is caused by (1) climatically driven changes in both clades based on evidence of responses to cooling and warming events, and (2) distinct biogeographical histories constrained by tropical niche conservatism and niche evolution. This multidisciplinary approach provides new findings that allow better understanding of the factors that shape LDGs.  相似文献   

18.
Abstract. In this review, we seek to develop new insights about the nature of algal‐sea anemone symbioses by comparing such associations in temperate and tropical seas. Temperate seas undergo pronounced seasonal cycles in irradiance, temperature, and nutrients, while high irradiance, high temperature, and low nutrients are seasonally far less variable in tropical seas. We compare the nature of symbiosis between sea anemones (= actinians) and zooxanthellae (Symbiodinium spp.) in both regions to test tropical paradigms against temperate examples and to identify directions for future research. Although fewer anemone species are symbiotic in temperate regions, they are locally dominant and ecologically important members of the benthic community compared to the tropics. Zooxanthella densities tend to be lower in temperate anemones, but data are limited to a few species in both temperate and tropical seas. Zooxanthella densities are far more stable over time in temperate anemones than in tropical anemones, suggesting that temperate symbioses are more resistant to fluctuations in environmental parameters such as irradiance and temperature. Light‐saturated photosynthetic rates of temperate and tropical zooxanthellae are similar, but temperate anemone hosts receive severely reduced carbon supplies from zooxanthellae during winter months when light is reduced. Symbiont transmission modes and specificity do not show any trends among anemones in tropical vs. temperate seas. Our review indicates the need for the following: (1) Investigations of other temperate and tropical symbiotic anemone species to assess the generality of trends seen in a few “model’ anemones. (2) Attention to the field ecology of temperate and tropical algal‐anemone symbioses, for example, how symbioses function under seasonally variable environmental factors and how zooxanthellae persist at high densities in darkness and winter. The greater stability of zooxanthella populations in temperate hosts may be useful to understanding tropical symbioses in which bleaching (loss of zooxanthellae) is of major concern. (3) Study of the evolutionary history of symbiosis in both temperate and tropical seas. Continued exploration of the phylogenetic relationships between host anemones and zooxanthella strains may show how and why zooxanthellae differ in anemone hosts in both environments.  相似文献   

19.
Geographic patterns of variation in life‐history traits have puzzled researchers for decades. However, the widely accepted idea that mating systems exhibit a tropical–temperate latitudinal trend, with extra‐pair mating systems being the norm among temperate species and genetic monogamy the norm among tropical species, is supported by sparse data, particularly for birds breeding in the tropics and even more so for birds that breed in the southern hemisphere temperate zone. Our objective was to examine the genetic mating system of Chilean Swallows (Tachycineta meyeni) breeding at 54°S in Tierra del Fuego, Argentina. From 2006 to 2009, we examined the paternity of young in 52 broods. Contrary to predictions based on their congeners that breed at equivalent latitudes in the northern hemisphere, Chilean Swallows in our study had low rates of extra‐pair paternity (EPP), with 13.5% of nests (N = 52) having at least one extra‐pair young and 6.8% of all nestlings (N = 161) fathered by extra‐pair males. These rates are also lower than those reported for species of Tachycineta swallows that breed at tropical latitudes. We found no support for a tropical–south temperate latitudinal cline in EPP rates. The highly unpredictable weather of the island of Tierra del Fuego might be influencing parental investment at this site; small clutch sizes and low EPP rates are expected if biparental attention is crucial for chick survival and reproductive success for these aerial insectivores. We argue that the sparse sampling of mating systems in birds worldwide may have contributed to a misapprehension of a global pattern. More studies of tropical and south‐temperate systems are needed to build on theories based on a wider set of taxa.  相似文献   

20.
The evolutionary causes of sexual dimorphism in plants have not been as widely studied as in animals and the importance of sexual selection in causing dimorphism remains controversial. Sexual selection is most obvious when it favours the evolution of a trait which enhances mating success at the expense of decreased viability. We studied the relationship between floral display (number of inflorescences), pollinator attraction and plant survival in a dioecious shrub, Leucadendron xanthoconus. Pollinator attraction, measured as the number of insect pollinators, increased linearly with floral display in males. However, males with extravagant displays had a higher probability of dying. Our data suggest that male plants are undergoing selection on floral display for increased mating success counterbalanced by selection against plants with extravagant displays. Seed set in females did not increase with floral display, except at very low inflorescence numbers. Nor was female survival correlated with floral display. Because inflorescences are terminal in the species, selection for more inflorescences in males causes increased ramification, thinner terminal branches and smaller leaves. Thus vegetative dimorphism in this species appears to be caused by selection for extravagant floral display in males, but not females. Limits to dimorphism are imposed by survival costs of elaborate display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号