首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One fundamental signature of reinforcement is elevated prezygotic reproductive isolation between related species in sympatry relative to allopatry. However, this alone is inadequate evidence for reinforcement, as traits conferring reproductive isolation can occur as a by‐product of other forces. We conducted crosses between Silene latifolia and S. diclinis, two closely related dioecious flowering plant species. Crosses with S. latifolia mothers from sympatry exhibited lower seed set than mothers from five allopatric populations when S. diclinis was the father. However, two other allopatric populations also exhibited low seed set. A significant interaction between style length and sire species revealed that seed set declined as style length increased when interspecific, but not intraspecific, fathers where used. Moreover, by varying the distance pollen tubes had to traverse, we found interspecific pollen placement close to the ovary resulted in seed set in both long‐ and short‐styled S. latifolia mothers. Our results reveal that the long styles of S. latifolia in sympatry with S. diclinis contribute to the prevention of hybrid formation. We argue that forces other than reinforcing selection are likely to be responsible for the differences in style length seen in sympatry.  相似文献   

2.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

3.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback.  相似文献   

4.
Although mechanical isolation mediated by shared pollinators has been considered as a classic model of pollinator-mediated floral isolation in Pedicularis, a superdiverse genus in Hengduan Mountains, southwest China, there has been no empirical study of interspecific pollen flow between closely related species. We examined reproductive barriers at six different stages between Pedicularis cranolopha and Pedicularis tricolor, two sister species. The two sister species were geographically isolated from each other based on our field survey and the records of herbarium specimens. Translocation experiments showed that flowering phenology partly overlapped and bumblebee pollinators did not discriminate between flowers of the two species. Bumblebee interspecific moves could mediate interspecific pollination as traced using fluorescent powder, in which pollen analogs placed on one species were transferred to the stigmas of the other species in experimental plots containing both species. Heterospecific pollen tubes grew in the style as well as conspecific pollen in hand-pollination experiments. Reciprocal hybridization between the two species could produce (partially) viable seeds, suggesting weak post-pollination barriers. Our results showed that geographic isolation was an important barrier of two species, and the total reproductive isolation between two species was incomplete when without geographical isolation. The formation of Big Snow Mountains could introduce an important pre-zygotic reproductive barrier between the two sister species of Pedicularis; such geographical isolation could be responsible for allopatric speciation, giving a clue to understanding the rapid radiation on mountain areas.  相似文献   

5.
Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree, Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree, P. subserratum.  相似文献   

6.
Reproductive barriers are important determinants of gene flow between divergent populations or species. We studied pollen competition as a post‐mating reproductive barrier between Silene dioica and S. latifolia. Gene flow between these species is extensive, but early‐generation hybrids are rare. In an experiment with conspecific, heterospecific and 50 : 50 mixed pollinations in the two species, pollination treatments did not significantly affect seed set and seed weight. However, molecular determination of siring success after mixed pollinations showed that fewer than expected hybrids were produced in S. latifolia (18% hybrids) but not in S. dioica (51% hybrids). This constitutes an asymmetric post‐mating reproductive barrier and likely contributes to the rarity of early‐generation hybrids. Our study shows that pollen competition can be an effective barrier to hybridization between closely related species that likely acts in concert with other reproductive barriers.  相似文献   

7.
We assessed the effects of habitat fragmentation on reproductive success in natural populations of four forest herbs with differing life-history traits and whose distribution patterns appeared to be negatively affected by decreased habitat size and/or increased isolation: Carex sylvatica, Galium odoratum, Sanicula europaea and Veronica montana. Our aims were to test (1) whether habitat size and isolation are positively correlated with population size and isolation, respectively, (2) whether plant reproductive success, a major component of plant fitness, is reduced in small and/or isolated populations when also accounting for differences in habitat quality (edaphic conditions, light intensity) and the effects of plant size, and (3) whether species with different life histories are affected differently. There were significant positive relationships between habitat and population size and between habitat and population isolation in some, but not all of the species. We mostly found no negative effects of small population size or isolation on reproduction. However, reproductive success was reduced in small populations of Sanicula, and this effect was independent of differences in plant size and environmental conditions. The reduced fecundity in small populations may be a consequence of the Allee-effect, a possible mechanism being pollen limitation. Furthermore, the proportion of flowering ramets was reduced in small and isolated populations of Galium, which may have been caused by changes in population structure. Lastly, we found some evidence for largely outcrossing, non-clonal species to be more sensitive to reductions in population size, at least in terms of their reproductive success.  相似文献   

8.
9.
The crucial role of reproductive isolation in speciation has long been recognized; however, a limited number of studies quantify different isolation barriers and embed reproductive isolation in a phylogenetic context. In this study, we investigate reproductive isolation between the often sympatrically occurring orchid species, Gymnadenia conopsea and G. odoratissima. We examine the phylogenetic relationship between the two species and analyse floral isolation, fruit set and seed viability from interspecies crosses, as well as the ploidy level. Additionally, we quantify interspecies differences in floral signals and morphology. The results suggest that the two species have a sister–species relationship. In terms of reproductive isolation, we found complete floral isolation between the two species, but little to no post‐pollination isolation; the species also mostly had the same ploidy level in the studied populations. We also show clear distinctions in floral signals, as well as in floral size and spur length. We propose that respective adaptation to short‐ vs. long‐tongued pollinators was the driver of speciation in the here studied Gymnadenia species. Our study supports the key role of floral isolation in orchid speciation and shows that floral isolation is not restricted to highly specialized pollination systems, but can also occur between species with less specialized pollination.  相似文献   

10.
In animal‐pollinated plants, both the spatial distribution of flowering individuals and the number of flowers that an individual displays affect pollen deposition rates and female reproductive success. Heterostylous species are likely to be particularly sensitive to the contingencies of spatial distribution, as they are reproductively subdivided into distinct mating groups, which usually exhibit self‐ and intra‐morph incompatibility and differ in floral morphology. In this paper, we explore the joint effects of both spatial distribution of potential mates and floral display size on morph‐specific pollen deposition rates and seed set patterns in two natural populations of Pulmonaria officinalis, a distylous species with a weak self‐incompatibility system. Both total stigmatic pollen load and the proportion of legitimate pollen decreased with increasing spatial isolation. Legitimate (intermorph) pollen transfer was, however, asymmetric and decreased more rapidly with decreasing proximity to a compatible legitimate mating partner in the S‐morph than in the L‐morph. Total stigmatic pollen loads per flower increased with increasing floral display size, indicating that large plants are disproportionately more visited than smaller individuals. However, because legitimate pollen deposition decreased with increasing floral display size, these results also suggest that larger numbers of flowers increase the degree of geitonogamous pollination. In both the L‐ and S‐morph, seed set significantly decreased with increasing isolation from a legitimate mating partner, but in the L‐morph seed set was less dependent on the spatial distribution of the S‐morph. In addition, seed set significantly increased with floral display size in the L‐morph, but not in the S‐morph. These findings indicate that the spatial distribution of potential mates and variation in floral display size may cause morph‐specific differences in pollen deposition rates and female reproductive success.  相似文献   

11.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

12.
Ceiba pentandra is a tropical tree with high rates of selfing in some populations. In mixed‐mating species, variation in selfing is due to changes in adult density or variability of incompatibility systems. The effect of spatial isolation and phenology on selfing rates and pollen flow distances was analyzed using microsatellites in a fragmented population of Ceiba pentandra, in southern Costa Rica. Adult trees within a heterogeneous landscape were classified as grouped or isolated. We compared selfing rates at the individual level, between isolation conditions and 2 yr (2007, 2009), which differed in the number of flowering individuals. Mixed mating was estimated in both years (tm = 0.624–0.759). Trees mated predominantly by outcrossing, while only a few trees reproduced through selfing. Spatial isolation did not significantly affect outcrossing rates. The progeny of grouped trees was mostly sired by near‐neighbors (<1 km) and by long‐distance pollen flow events in isolated trees. A reduction in the number of flowering individuals in 2009 reduced near‐neighbor matings, increased selfing in grouped trees, and decreased the number of unsampled sires in the progeny. Comparing selfing rates on individuals that flowered in both reproductive periods suggests a flexible mating system. Variation in self‐fertilization rates in this population appears to depend on variation of individual traits, such as genetic variability in self‐incompatibility genes, but it is independent of landscape heterogeneity. In contrast, pollen flow distances depend on local tree density as bats concentrate their foraging between near individuals to maximize energy efficiency.  相似文献   

13.
Floral isolation is an important component of pollinator-driven speciation. However, up to now, only a few studies have quantified its strength and relative contribution to total reproductive isolation. In this study, we quantified floral isolation among three closely related, sympatric orchid species of the genus Ophrys by directly tracking pollen flow. Ophrys orchids mimic their pollinators' mating signals, and are pollinated by male insects during mating attempts. This pollination system, called sexual deception, is usually highly specific. However, whether pollinator specialization also conveys floral isolation is currently under debate. In this study, we found strong floral isolation: among 46 tracked pollen transfers in two flowering seasons, all occurred within species. Accounting for observation error rate, we estimated a floral isolation index ≥0.98 among each pair of species. Hand pollination experiments suggested that postpollination barriers were effectively absent among our study species. Genetic analysis based on AFLP markers showed a clear species clustering and very few F(1) hybrids in natural populations, providing independent evidence that strong floral isolation prevents significant interspecies gene flow. Our results provide the first direct evidence that floral isolation acts as the main reproductive barrier among closely related plant species with specialized pollination.  相似文献   

14.
Sexual isolation, a reproductive barrier, can prevent interbreeding between diverging populations or species. Sexual isolation can have a clear genetic basis; however, it may also result from learned mate preferences that form via sexual imprinting. Here, we demonstrate that two sympatric species of mice—the white‐footed mouse (Peromyscus leucopus) and its sister species, the cotton mouse (P. gossypinus)—hybridize only rarely in the wild despite co‐occurrence in the same habitat and lack of any measurable intrinsic postzygotic barriers in laboratory crosses. We present evidence that strong conspecific mating preferences in each species result in significant sexual isolation. We find that these preferences are learned in at least one species: P. gossypinus sexually imprints on its parents, but in P. leucopus, additional factors influence mating preferences. Our study demonstrates that sexual imprinting contributes to reproductive isolation that reduces hybridization between otherwise interfertile species, supporting the role for learning in mammalian speciation.  相似文献   

15.
External male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species‐specific tactile cues has not been tested. We tested the importance of mechanical and tactile incompatibilities in RI between Enallagma anna and E. carunculatum, two damselfly species that diverged within the past ~250,000 years and currently hybridize in a sympatric region. We quantified 19 prezygotic and postzygotic RI barriers using both naturally occurring and laboratory‐reared damselflies. We found incomplete mechanical isolation between the two pure species and between hybrid males and pure species females. Interestingly, in mating pairs for which mechanical isolation was incomplete, females showed greater resistance and refusal to mate with hybrid or heterospecific males compared to conspecific males. This observation suggests that tactile incompatibilities involving male reproductive structures can influence female mating decisions and form a strong barrier to gene flow in early stages of speciation.  相似文献   

16.
We studied the reproductive biology of three sympatric Araceae species, Anthurium sagittatum, A. thrinax and Spathiphyllum humboldtii in French Guiana. The plants flowered simultaneously and were visited by scent‐collecting male euglossine bees, which were apparently their major pollinators. In total, each species was visited by 3–7 euglossine species, and 2–3 euglossine species accounted for at least 80% of all flower visits, with visits being plant species‐specific. Floral scent consisted of 6–10 main compounds, which made up 76–94% of the total amount of volatiles and were specific in these high amounts to each plant species. We suggest that the different floral scents lead to clear separation of the main pollinating euglossine species, providing a directed and efficient intraspecific pollen flow that results in high reproductive success. Since the simple floral (inflorescence) morphology of the studied plants does not support any morphological mechanisms to exclude visitors, as for example in euglossine‐pollinated perfume orchids, floral scent might be of major importance for the reproductive isolation and sympatric occurrence of these plants.  相似文献   

17.
Summary Reports suggest that there is widespread reproductive failure inLinnaea borealis in Britain, Scandinavia, and North America. Our investigations of Scottish populations of this clonal dwarf shrub indicate that, although visited by a number of different insects, pollen transfer in this species is highly effective and principally occurs by small flies (Muscidae). However, natural levels of fruit set varied between populations (from 0% to 25.1%) and reproductive failure was most severe in populations which were composed of single clones. Microscopic examination of stigmas showed that there is no barrier to pollen flow since at least 85% of stigmas have sufficient germinating pollen to effect seed set. Fluorescence microscopy of germinating pollen grains indicates high levels of pollen rejection in the style and only a small proportion of the pollen tubes were able to reach the ovary. It was concluded that lack of xenogamous pollination limits fruit formation in populations ofL. borealis. Reproductive success in an isolated population with extreme reproductive failure was restored by experimental field pollination with viable pollen imported from plants from another population. In Scotland,L. borealis occurs in small, isolated populations and restoration of reproduction can be achieved by the reintroduction of compatible mating partners. This is an important consideration for the conservation management of isolated populations since their long-term recovery may only be possible by translocation of different genotypes from elsewhere into the population. Habitat fragmentation in any part of the species range may impose a potential reproductive bottleneck by causing loss of population diversity and this could explain the low levels of seed set recorded for this species in other parts of its range.  相似文献   

18.
Species integrity relies on the maintenance of reproductive isolation, particularly between closely related species. Further, it has been hypothesized that the presence of heterospecific pollen on flower stigmas adversely affects plant reproduction with increasing effect in closely related species. Using two pairs of co‐occurring buzz‐pollinated Thysanotus spp. in the Mediterranean climate region of Perth, Western Australia, we quantified the effect of heterospecific pollen on fruit and seed set. We first determined the mating systems of the two focal species using self‐ and outcross pollen, followed by separate treatments with heterospecific pollen within each species pair. Of the two species receiving pollen, Thysanotus triandrus had a mixed mating system, but with significantly lower fruit and seed set from self‐pollen relative to outcross pollen. Thysanotus tenellus was autogamous with no difference in fruit or seed set between autogamous, self‐ or outcross pollinations. Heterospecific pollen had no effect on fruit or seed set of either focal species. These outcomes point to post‐pollination reproductive isolation, consistent with a floral morphology that causes low specificity of pollen placement and thus a poor capacity for pre‐pollination discrimination. Negative effects of heterospecific pollen, therefore, do not appear to play a role in the reproduction in this group of buzz‐pollinated flowers.  相似文献   

19.
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate—female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate‐female reproductive tract interactions within species that may cause this PMPZ isolation.  相似文献   

20.
Pollen movements and mating patterns are key features that influence population genetic structure. When gene flow is low, small populations are prone to increased genetic drift and inbreeding, but naturally disjunct species may have features that reduce inbreeding and contribute to their persistence despite genetic isolation. Using microsatellite loci, we investigated outcrossing levels, family mating parameters, pollen dispersal, and spatial genetic structure in three populations of Hakea oldfieldii, a fire‐sensitive shrub with naturally disjunct, isolated populations prone to reduction in size and extinction following fires. We mapped and genotyped a sample of 102 plants from a large population, and all plants from two smaller populations (28 and 20 individuals), and genotyped 158–210 progeny from each population. We found high outcrossing despite the possibility of geitonogamous pollination, small amounts of biparental inbreeding, a limited number of successful pollen parents within populations, and significant correlated paternity. The number of pollen parents for each seed parent was moderate. There was low but significant spatial genetic structure up to 10 m around plants, but the majority of successful pollen came from outside this area including substantial proportions from distant plants within populations. Seed production varied among seven populations investigated but was not correlated with census population size. We suggest there may be a mechanism to prevent self‐pollination in H. oldfieldii and that high outcrossing and pollen dispersal within populations would promote genetic diversity among the relatively small amount of seed stored in the canopy. These features of the mating system would contribute to the persistence of genetically isolated populations prone to fluctuations in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号