首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life‐history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation‐accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.  相似文献   

2.
Two genetic models exist to explain the evolution of ageing – mutation accumulation (MA) and antagonistic pleiotropy (AP). Under MA, a reduced intensity of selection with age results in accumulation of late‐acting deleterious mutations. Under AP, late‐acting deleterious mutations accumulate because they confer beneficial effects early in life. Recent studies suggest that the mitochondrial genome is a major player in ageing. It therefore seems plausible that the MA and AP models will be relevant to genomes within the cytoplasm. This possibility has not been considered previously. We explore whether patterns of covariation between fitness and ageing across 25 cytoplasmic lines, sampled from a population of Drosophila melanogaster, are consistent with the genetic associations predicted under MA or AP. We find negative covariation for fitness and the rate of ageing, and positive covariation for fitness and lifespan. Notably, the direction of these associations is opposite to that typically predicted under AP.  相似文献   

3.
Shaw RG  Chang SM 《Genetics》2006,172(3):1855-1865
For a newly arising mutation affecting a trait under selection, its degree of dominance relative to the preexisting allele(s) strongly influences its evolutionary impact. We have estimated dominance parameters for spontaneous mutations in a subset of lines derived from a highly inbred founder of Arabidopsis thaliana by at least 17 generations of mutation accumulation (MA). The labor-intensive nature of the crosses and the anticipated subtlety of effects limited the number of MA lines included in this study to 8. Each MA line was selfed and reciprocally crossed to plants representing the founder genotype, and progeny were assayed in the greenhouse. Significant mutational effects on reproductive fitness included a recessive fitness-enhancing effect in one line and fitness-reducing effects, one additive and the other slightly recessive. Mutations conferring earlier phenology or smaller leaves were significantly recessive. For effects increasing leaf number and reducing height at flowering, additive gene action accounted for the expression of the traits. The sole example of a significantly dominant mutational effect delayed phenology. Our findings of recessive action of a fitness-enhancing mutational effect and additive action of a deleterious effect counter a common expectation of (partial) dominance of alleles that increase fitness, but the frequency of occurrence of such mutations is unknown.  相似文献   

4.
Temperature determines the rates of all biochemical and biophysical processes, and is also believed to be a key driver of macroevolutionary patterns. It is suggested that physiological constraints at low temperatures may diminish the fitness advantages of otherwise beneficial mutations; by contrast, relatively high, benign, temperatures allow beneficial mutations to efficiently show their phenotypic effects. To experimentally test this “mutational effects” mechanism, we examined the fitness effects of mutations across a temperature gradient using bacterial genotypes from the early stage of a mutation accumulation experiment with Escherichia coli. While the incidence of beneficial mutations did not significantly change across environmental temperatures, the number of mutations that conferred strong beneficial fitness effects was greater at higher temperatures. The results therefore support the hypothesis that warmer temperatures increase the chance and magnitude of positive selection, with implications for explaining the geographic patterns in evolutionary rates and understanding contemporary evolution under global warming.  相似文献   

5.
Mutations create novel genetic variants, but their contribution to variation in fitness and other phenotypes may depend on environmental conditions. Furthermore, natural environments may be highly heterogeneous. We assessed phenotypes associated with survival and reproductive success in over 30,000 plants representing 100 mutation accumulation lines of Arabidopsis thaliana across four temporal environments at a single field site. In each of the four assays, environmental variance was substantially larger than mutational variance. For some traits, whether mutational variance was significantly varied between seasons. The founder genotype had mean trait values near the mean of the distribution of the mutation accumulation lines in all field experiments. New mutations also contributed more phenotypic variation than would be predicted, given phenotypic and sequence‐level divergence among natural populations of A. thaliana. The combination of large environmental variance with a mean effect of mutation near zero suggests that mutations could contribute substantially to standing genetic variation.  相似文献   

6.
Screens of organisms with disruptive mutations in a single gene often fail to detect phenotypic consequences for the majority of mutants. One explanation for this phenomenon is that the presence of paralogous loci provides genetic redundancy. However, it is also possible that the assayed traits are affected by few loci, that effects could be subtle or that phenotypic effects are restricted to certain environments. We assayed a set of T‐DNA insertion mutant lines of Arabidopsis thaliana to determine the frequency with which mutation affected fitness‐related phenotypes. We found that between 8% and 42% of the assayed lines had altered fitness from the wild type. Furthermore, many of these lines exhibited fitness greater than the wild type. In a second experiment, we grew a subset of the lines in multiple environments and found whether a T‐DNA insert increased or decreased fitness traits depended on the assay environment. Overall, our evidence contradicts the hypothesis that genetic redundancy is a common phenomenon in A. thaliana for fitness traits. Evidence for redundancy from prior screens of knockout mutants may often be an artefact of the design of the phenotypic assays which have focused on less complex phenotypes than fitness and have used single environments. Finally, our study adds to evidence that beneficial mutations may represent a significant component of the mutational spectrum of A. thaliana.  相似文献   

7.
We measured the impact of new mutations on genetic variation for body size in two independent sets of C. elegans spontaneous mutation-accumulation (MA) lines, derived from the N2 strain, that had been maintained by selfing for 60 or 152 generations. The two sets of lines gave broadly consistent results. The change of among-line genetic variation between cryopreserved controls and the MA lines implied that broad sense heritability increased by 0.4% per generation. Overall, MA reduced mean body size by approximately 0.1% per generation. The genome-wide rate for mutations with detectable effects on size was estimated to be approximately 0.0025 per haploid genome per generation, and their mean effects were approximately 20%. The proportion of mutations that increase body size was estimated by maximum likelihood to be no more than 20%, suggesting that the amount of mutational variation available for selection for increased size could be quite small. This hypothesis was supported by an artificial selection experiment on adult body size, started from a single highly inbred N2 individual. We observed a strongly asymmetrical response to selection of a magnitude consistent with the input of mutational variance observed in the MA experiment.  相似文献   

8.
The rate and fitness effects of new mutations have been investigated by mutation accumulation (MA) experiments in which organisms are maintained at a constant minimal population size to facilitate the accumulation of mutations with minimal efficacy of selection. We evolved 35 MA lines of Caenorhabditis elegans in parallel for 409 generations at three population sizes (N = 1, 10, and 100), representing the first spontaneous long-term MA experiment at varying population sizes with corresponding differences in the efficacy of selection. Productivity and survivorship in the N = 1 lines declined by 44% and 12%, respectively. The average effects of deleterious mutations in N = 1 lines are estimated to be 16.4% for productivity and 11.8% for survivorship. Larger populations (N = 10 and 100) did not suffer a significant decline in fitness traits despite a lengthy and sustained regime of consecutive bottlenecks exceeding 400 generations. Together, these results suggest that fitness decline in very small populations is dominated by mutations with large deleterious effects. It is possible that the MA lines at larger population sizes contain a load of cryptic deleterious mutations of small to moderate effects that would be revealed in more challenging environments.  相似文献   

9.
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations—that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype–environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype–environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype–environment interaction would increase the amount of genetic variation maintained by mutation‐selection balance.  相似文献   

10.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

11.
Adult reproductive success can account for a large fraction of male fitness, however, we know relatively little about the susceptibility of reproductive traits to mutation-accumulation (MA). Estimates of the mutational rate of decline for adult fitness and its components are controversial in Drosophila melanogaster, and post-copulatory performance has not been examined. We therefore separately measured the consequences of MA for total male reproductive success and its major pre-copulatory and post-copulatory components: mating success and sperm competitive success. We also measured juvenile viability, an important fitness component that has been well studied in MA experiments. MA had strongly deleterious effects on both male viability and adult fitness, but the latter declined at a much greater rate. Mutational pressure on total fitness is thus much greater than would be predicted by viability alone. We also noted a significant and positive correlation between all adult traits and viability in the MA lines, suggesting pleiotropy of mutational effect as required by 'good genes' models of sexual selection.  相似文献   

12.
Fry JD 《Genetics》2004,166(2):797-806
High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others' effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi's experiment as well as in Mukai's, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai's estimate of the genomic mutation rate is supported, that from Ohnishi's experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai's experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.  相似文献   

13.
Keightley PD  Halligan DL 《Genetica》2009,136(2):359-369
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V M ). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V M for fitness is only a tiny fraction of V M observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.  相似文献   

14.
Abstract We have analysed the effect of 288 generations of mutation accumulation (MA) on chromosome II competitive fitness in 21 full‐sib lines of Drosophila melanogaster and in a large control population, all derived from the same isogenic base. The rate of mean log‐fitness decline and that of increase of the between‐line variance were consistent with a low rate (λ ≈ 0.03 per gamete and generation), and moderate average fitness effect [E(s) ≈ 0.1] of deleterious mutation. Subsequently, crosses were made between pairs of MA lines, and these were maintained with effective size on the order of a few tens. In these crosses, MA recombinant chromosomes quickly recovered to about the average fitness level of control chromosomes. Thus, deleterious mutations responsible for the fitness decline were efficiently selected against in relatively small populations, confirming that their effects were larger than a few percent.  相似文献   

15.
How new mutations contribute to genetic variation is a key question in biology. Although the evolutionary fate of an allele is largely determined by its heterozygous effect, most estimates of mutational variance and mutational effects derive from highly inbred lines, where new mutations are present in homozygous form. In an attempt to overcome this limitation, middle-class neighborhood (MCN) experiments have been used to assess the fitness effect of new mutations in heterozygous form. However, because MCN populations harbor substantial standing genetic variance, estimates of mutational variance have not typically been available from such experiments. Here we employ a modification of the animal model to analyze data from 22 generations of Drosophila serrata bred in an MCN design. Mutational heritability, measured for eight cuticular hydrocarbons, 10 wing-shape traits, and wing size in this outbred genetic background, ranged from 0.0006 to 0.006 (with one exception), a similar range to that reported from studies employing inbred lines. Simultaneously partitioning the additive and mutational variance in the same outbred population allowed us to quantitatively test the ability of mutation-selection balance models to explain the observed levels of additive and mutational genetic variance. The Gaussian allelic approximation and house-of-cards models, which assume real stabilizing selection on single traits, both overestimated the genetic variance maintained at equilibrium, but the house-of-cards model was a closer fit to the data. This analytical approach has the potential to be broadly applied, expanding our understanding of the dynamics of genetic variance in natural populations.  相似文献   

16.
Abstract Although the evolutionary importance of spontaneous mutation is evident, its contribution to the evolution of ecological specificity remains unclear, because the environmental sensitivity of effects of new mutations has received little empirical attention. To address this issue, we report a greenhouse in which we grew plants from 20 mutation-accumulation (MA) lines, advanced by selfing and single-seed descent from a single common founder to generation 17, as well as plants from five lines representing the founder, in high and low nutrient conditions. We examined 11 traits throughout life history, including germination, survivorship, bolting date, flowering date, leaf number, leaf size, early and late height, mean fruit size, total seed weight, and reproductive biomass. Comparison of trait means between the two generations did not support the commonly held view that new mutations affecting fitness in these MA lines are strongly biased toward deleterious effects. We detected significant variance among MA lines for one fitness component, mean fruit size, but we did not detect a significant contribution of mutations accumulated in these MA lines to genotype by environment interaction (GEI). These results suggest that other evolutionary mechanisms play a more important role than spontaneous mutation alone in establishing the GEI found for wild collections and lab accessions of Arabidopsis thaliana in previous studies.  相似文献   

17.
The genetic variability for RAPDs band pattern was studied in a set of 157 mutation accumulation (MA) lines of Drosophila melanogaster. These MA lines were derived from the same isogenic base population and subsequently maintained by full-sib mating during 132 generations. The ancestral pattern of the original isogenic base can be unambiguously established as the consensus pattern of the MA lines and, because these lines are expected to be homozygous, dominance for band pattern is not a concern. Only repeatable changes in band pattern were considered. The number of ancestral bands detected implies that nine-nucleotide targets are enough for repeatable PCR amplification. Compared with the ancestral pattern, one MA line lost one band and two MA lines gained a new one. These results can be accounted for by the insertion of transposable elements occurring at a rate 0.07 < i < 0.21 per whole haploid genome and generation. This range is typical for Drosophila and consistent with the previously observed mobility for the roo family, supporting the generality of previous estimates of spontaneous mutation rates for morphological and fitness traits based on these MA lines. The sequence of one of the new bands suggests that the Idefix family is also active in the lines.  相似文献   

18.
Repeated efforts to estimate the genomic deleterious mutation rate per generation (U) in Drosophila melanogaster have yielded inconsistent estimates ranging from 0.01 to nearly 1. We carried out a mutation-accumulation experiment with a cryopreserved control population in hopes of resolving some of the uncertainties raised by these estimates. Mutation accumulation (MA) was carried out by brother sister mating of 150 sublines derived from two inbred lines. Fitness was measured under conditions chosen to mimic the ancestral laboratory environment of these genotypes. We monitored the insertions of a transposable element, copia, that proved to accumulate at the unusually high rate of 0.24 per genome per generation in one of our MA lines. Mutational variance in fitness increased at a rate consistent with previous studies, yielding a mutational coefficient of variation greater than 3%. The performance of the cryopreserved control relative to the MA lines was inconsistent, so estimates of mutation rate by the Bateman-Mukai method are suspect. Taken at face value, these data suggest a modest decline in fitness of about 0.3% per generation. The element number of copia was a significant predictor of fitness within generations; on average, insertions caused a 0.76% loss in fitness, although the confidence limits on this estimate are wide.  相似文献   

19.
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.  相似文献   

20.
Mackay TF  Lyman RF  Lawrence F 《Genetics》2005,170(4):1723-1735
Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号