首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modest dietary restriction extends lifespan (LS) in a diverse range of taxa and typically has a larger effect in females than males. Traditionally, this has been attributed to a stronger trade‐off between LS and reproduction in females than in males that is mediated by the intake of calories. Recent studies, however, suggest that it is the intake of specific nutrients that extends LS and mediates this trade‐off. Here, we used the geometric framework (GF) to examine the sex‐specific effects of protein (P) and carbohydrate (C) intake on LS and reproduction in Drosophila melanogaster. We found that LS was maximized at a high intake of C and a low intake of P in both sexes, whereas nutrient intake had divergent effects on reproduction. Male offspring production rate and LS were maximized at the same intake of nutrients, whereas female egg production rate was maximized at a high intake of diets with a P:C ratio of 1:2. This resulted in larger differences in nutrient‐dependent optima for LS and reproduction in females than in males, as well as an optimal intake of nutrients for lifetime reproduction that differed between the sexes. Under dietary choice, the sexes followed similar feeding trajectories regulated around a P:C ratio of 1:4. Consequently, neither sex reached their nutritional optimum for lifetime reproduction, suggesting intralocus sexual conflict over nutrient optimization. Our study shows clear sex differences in the nutritional requirements of reproduction in D. melanogaster and joins the growing list of studies challenging the role of caloric restriction in extending LS.  相似文献   

2.
As females and males have different roles in reproduction, they are expected to require different nutrients for the expression of reproductive traits. However, due to their shared genome, both sexes may be constrained in the regulation of nutrient intake that maximizes sex‐specific fitness. Here, we used the Geometric Framework for nutrition to examine the effect of macronutrient and micronutrient intakes on lifespan, fecundity and cuticular hydrocarbons (CHCs) that signal mate quality to prospective mates in female field crickets, Teleogryllus oceanicus. In addition, we contrasted nutritional effects on life‐history traits between males and females to determine how sex differences influence nutrient regulation. We found that carbohydrate intake maximized female lifespan and protein intake influenced CHC expression, while early life fecundity (cumulative fecundity at day 21) and lifetime fecundity were dependent on both macronutrient and micronutrient intakes. Fecundity required different nutrient blends to those required to optimize sperm viability in males, generating the potential for sexual conflict over macronutrient intake. The regulation of protein (P) and carbohydrate (C) intakes by virgin and mated females initially matched that of males, but females adjusted their intake to a higher P:C ratio, 1P:2C, that maximized fecundity as they aged. This suggests that a sex‐specific, age‐dependent change in intake target for sexually mature females, regardless of their mating status, adjusts protein consumption in preparation for oviposition. Sex differences in the regulation of nutrient intake to optimize critical reproductive traits in female and male T. oceanicus provide an example of how sexual conflict over nutrition can shape differences in foraging between the sexes.  相似文献   

3.
Sexual conflict results in a diversity of sex‐specific adaptations, including chemical additions to ejaculates. Male decorated crickets (Gryllodes sigillatus) produce a gelatinous nuptial gift (the spermatophylax) that varies in size and free amino acid composition, which influences a female's willingness to fully consume this gift. Complete consumption of this gift maximizes sperm transfer through increased retention of the sperm‐containing ampulla, but hinders post‐copulatory mate choice. Here, we examine the effects of protein (P) and carbohydrate (C) intake on the weight and amino acid composition of the spermatophylax that describes its gustatory appeal to the female, as well as the ability of this gift to regulate sexual conflict via ampulla attachment time. Nutrient intake had similar effects on the expression of these traits with each maximized at a high intake of nutrients with a P : C ratio of 1 : 1.3. Under dietary choice, males actively regulated their nutrient intake but this regulation did not coincide with the peak of the nutritional landscape for any trait. Our results therefore demonstrate that a balanced intake of nutrients is central to regulating sexual conflict in G. sigillatus, but males are constrained from reaching the optima needed to bias the outcome of this conflict in their favour.  相似文献   

4.
Sexual selection may cause dietary requirements for reproduction to diverge across the sexes and promote the evolution of different foraging strategies in males and females. However, our understanding of how the sexes regulate their nutrition and the effects that this has on sex‐specific fitness is limited. We quantified how protein (P) and carbohydrate (C) intakes affect reproductive traits in male (pheromone expression) and female (clutch size and gestation time) cockroaches (Nauphoeta cinerea). We then determined how the sexes regulate their intake of nutrients when restricted to a single diet and when given dietary choice and how this affected expression of these important reproductive traits. Pheromone levels that improve male attractiveness, female clutch size and gestation time all peaked at a high daily intake of P:C in a 1:8 ratio. This is surprising because female insects typically require more P than males to maximize reproduction. The relatively low P requirement of females may reflect the action of cockroach endosymbionts that help recycle stored nitrogen for protein synthesis. When constrained to a single diet, both sexes prioritized regulating their daily intake of P over C, although this prioritization was stronger in females than males. When given the choice between diets, both sexes actively regulated their intake of nutrients at a 1:4.8 P:C ratio. The P:C ratio did not overlap exactly with the intake of nutrients that optimized reproductive trait expression. Despite this, cockroaches of both sexes that were given dietary choice generally improved the mean and reduced the variance in all reproductive traits we measured relative to animals fed a single diet from the diet choice pair. This pattern was not as strong when compared to the single best diet in our geometric array, suggesting that the relationship between nutrient balancing and reproduction is complex in this species.  相似文献   

5.
As the evolutionary interests of males and females are frequently divergent, a trait value that is optimal for the fitness of one sex is often not optimal for the other. A shared genome also means that the same genes may underlie the same trait in both sexes. This can give rise to a form of sexual antagonism, known as intralocus sexual conflict (IASC). Here, a tug‐of‐war over allelic expression can occur, preventing the sexes from reaching optimal trait values, thereby causing sex‐specific reductions in fitness. For some traits, it appears that IASC can be resolved via sex‐specific regulation of genes that subsequently permits sexual dimorphism; however, it seems that whole‐genome resolution may be impossible, due to the genetic architecture of certain traits, and possibly due to the changing dynamics of selection. In this review, we explore the evolutionary mechanisms of, and barriers to, IASC resolution. We also address the broader consequences of this evolutionary feud, the possible interactions between intra‐ and interlocus sexual conflict (IRSC: a form of sexual antagonism involving different loci in each sex), and draw attention to issues that arise from using proxies as measurements of conflict. In particular, it is clear that the sex‐specific fitness consequences of sexual dimorphism require characterization before making assumptions concerning how this relates to IASC. Although empirical data have shown consistent evidence of the fitness effects of IASC, it is essential that we identify the alleles mediating these effects in order to show IASC in its true sense, which is a “conflict over shared genes.”  相似文献   

6.
The evolution of learning can be constrained by trade‐offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex‐specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex‐specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward‐selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward‐selected female lines. In contrast, we found no effect of selection on female reproduction and downward‐selected females showed higher locomotory activity but lived shorter as virgins than upward‐selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex‐specific trade‐offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex‐specific genetic correlations.  相似文献   

7.
The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition‐dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate‐to‐high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition‐dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition‐dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus.  相似文献   

8.
In insects, lifespan and reproduction are strongly associated with nutrition. The ratio and amount of nutrients individuals consume affect their life expectancy and reproductive investment. The geometric framework (GF) enables us to explore how animals regulate their intake of multiple nutrients simultaneously and determine how these nutrients interact to affect life‐history traits of interest. Studies using the GF on host‐generalist tephritid flies have highlighted trade‐offs between longevity and reproductive effort in females, mediated by the protein‐to‐carbohydrate (P:C) ratio that individuals consume. Here, we tested how P and C intake affect lifespan (LS) in both sexes, and female lifetime (LEP), and daily (DEP) egg production, in Ceratitis cosyra, a host‐specialist tephritid fly. We then determined the P:C ratio that C. cosyra defends when offered a choice of foods. Female LS was optimized at a 0:1 P:C ratio, whereas to maximize their fecundity, females needed to consume a higher P:C ratio (LEP = 1:6 P:C; DEP = 1:2.5 P:C). In males, LS was also optimized at a low P:C ratio of 1:10. However, when given the opportunity to regulate their intake, both sexes actively defended a 1:3 P:C ratio, which is closer to the target for DEP than either LS or LEP. Our results show that female C. cosyra experienced a moderate trade‐off between LS and fecundity. Moreover, the diets that maximized expression of LEP and DEP were of lower P:C ratio than those required for optimal expression of these traits in host‐generalist tephritids or other generalist insects.  相似文献   

9.
Sexual selection is a major force driving the evolution of elaborate male sexual traits. Handicap models of sexual selection predict that male sexual traits should covary positively with condition, making them reliable indicators of male quality. However, most studies have either manipulated condition through varying diet quantity and/or caloric content without knowledge of specific nutrient effects or have correlated proxies of condition with sexual trait expression. We used nutritional geometry to quantify protein and carbohydrate intake by male cockroaches, Nauphoeta cinerea, and related this to sex pheromone expression, attractiveness, and dominance status. We found that carbohydrate, but not protein, intake is related to male sex pheromone expression and attractiveness but not dominance status. Additionally, we related two condition proxies (weight gain and lipid reserves) to protein and carbohydrate acquisition. Weight gain increased with the intake of both nutrients, whereas lipid reserves only increased with carbohydrate intake. Importantly, lipid accumulation was not as responsive to carbohydrate intake as attractiveness and thus was a less-accurate condition proxy. Moreover, males preferentially consumed high carbohydrate diets with little regard for protein content suggesting that they actively increase their carbohydrate intake thereby maximizing their reproductive fitness by being attractive.  相似文献   

10.
Diet affects both lifespan and reproduction [1-9], leading to the prediction that the contrasting reproductive strategies of the sexes should result in sex-specific effects of nutrition on fitness and longevity [6, 10] and favor different patterns of nutrient intake in males and females. However, males and females share most of their genome and intralocus sexual conflict may prevent sex-specific diet optimization. We show that both male and female longevity were maximized on a high-carbohydrate low-protein diet in field crickets Teleogryllus commodus, but male and female lifetime reproductive performances were maximized in markedly different parts of the nutrient intake landscape. Given a choice, crickets exhibited sex-specific dietary preference in the direction that increases reproductive performance, but this sexual dimorphism in preference was incomplete, with both sexes displaced from the optimum diet for lifetime reproduction. Sexes are, therefore, constrained in their ability to reach their sex-specific dietary optima by the shared biology of diet choice. Our data suggest that sex-specific selection has thus far failed fully to resolve intralocus sexual conflict over diet optimization. Such conflict may be an important factor linking nutrition and reproduction to lifespan and aging.  相似文献   

11.
Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.  相似文献   

12.
Males often have reduced immune function compared to females but the proximate mechanisms underlying this taxonomically widespread pattern are unclear. Because immune function is resource-dependent and sexes may have different nutritional requirements, we hypothesized that sexual dimorphism in immune function may arise from differential nutrient intake (acquisition hypothesis). To test this hypothesis, we examined patterns of phenoloxidase (PO) activity in relation to nutrient consumption in Queensland fruit flies (Q-flies). In the first experiment, flies were allowed to choose their preferred nutrient intake. Compared with males, female Q-flies had higher PO activity, consumed more calories, and preferred a higher protein:carbohydrate (P:C) diet, suggesting that differential acquisition could explain sex differences. In the second experiment, we restricted flies to one of 12 diets varying in protein and carbohydrate concentrations and mapped PO activity for each sex onto a nutritional landscape. Counter to our hypothesis, females had higher PO activity than males at any given level of nutrient intake. Both carbohydrate and protein intake affected PO activity in females but only protein affected PO activity in males. Our results indicate that sex differences in Q-fly immune function are not solely explained by sex differences in nutrient intake, although nutrition does contribute to the magnitude of these sex differences.  相似文献   

13.
We examined dietary self‐selection and rules of compromise for protein (P) and digestible carbohydrate (C) intake by fifth‐instar Vanessa cardui L. (Lepidoptera: Nymphalidae: Nymphalini). We presented six fat‐free diet pairs to larvae in a choice trial to determine the ‘intake target’. In addition, we fed larvae seven fat‐free single diets differing in dietary nutrient ratio in no‐choice trials to determine the rules of compromise they exhibit when constrained to a singular, sub‐optimal dietary source. In choice trials, caterpillars regulated nutrient intake to a ratio of 1 protein to 1.09 carbohydrate (1P:1.09C), exhibiting tighter regulation of protein than of carbohydrate. Furthermore, larvae from different diet pair treatments did not differ in pupal mass or stadium duration. In no‐choice experiments, larvae reduced consumption on increasingly protein‐biased diets and increased consumption on increasingly carbohydrate‐biased diets, relative to a 1P:1C ratio diet. Differences in carbohydrate consumption were much greater between no‐choice treatments than differences in protein consumption. Dietary nutrient ratio affected pupal mass when accounting for initial larval mass. Pupal mass decreased as nutrient ratio was shifted off of 1P:1C, but to a greater extent when the ratio was skewed toward carbohydrate. Stadium duration increased as nutrient ratio diverged from 1P:1C, being more pronounced when shifted toward carbohydrate than toward protein. Regulation to near 1P:1C is consistent with results found for other Lepidoptera, and the rule of compromise exhibited by V. cardui is consistent with that expected for a generalist herbivore.  相似文献   

14.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

15.
For most animals, the ability to regulate intake of specific nutrients is vital to fitness. Recent studies have demonstrated nutrient regulation in nonhuman primates over periods of one observation day, though studies of humans indicate that such regulation extends to longer time frames. Little is known about longer-term regulation in nonhuman primates, however, due to the challenges of multiple-day focal follows. Here we present the first detailed study of nutrient intake across multiple days in a wild nonhuman primate. We conducted 30 consecutive all day follows on one female chacma baboon (Papio hamadryas ursinus) in the Cape Peninsula of South Africa. We documented dietary composition, compared the nutritional contribution of natural and human-derived foods to the diet, and quantified nutrient intake using the geometric framework of nutrition. Our focus on a single subject over consecutive days allowed us to examine daily dietary regulation within an individual over time. While the amounts varied daily, our subject maintained a strikingly consistent balance of protein to non-protein (fat and carbohydrate) energy across the month. Human-derived foods, while contributing a minority of the diet, were higher in fat and lower in fiber than naturally-derived foods. Our results demonstrate nutrient regulation on a daily basis in our subject, and demonstrate that she was able to maintain a diet with a constant proportional protein content despite wide variation in the composition of component foods. From a methodological perspective, the results of this study suggest that nutrient intake is best estimated over at least an entire day, with longer-term regulatory patterns (e.g., during development and reproduction) possibly requiring even longer sampling. From a management and conservation perspective, it is notable that nearly half the subject’s daily energy intake derived from exotic foods, including those currently being eradicated from the study area for replacement by indigenous vegetation.  相似文献   

16.
Organisms that regulate nutrient intake have an advantage over those that do not, given that the nutrient composition of any one resource rarely matches optimal nutrient requirements. We used nutritional geometry to model protein and carbohydrate intake and identify an intake target for a sexually dimorphic species, the Wellington tree weta (Hemideina crassidens). Despite pronounced sexual dimorphism in this large generalist herbivorous insect, intake targets did not differ by sex. In a series of laboratory experiments, we then investigated whether tree weta demonstrate compensatory responses for enforced periods of imbalanced nutrient intake. Weta pre-fed high or low carbohydrate: protein diets showed large variation in compensatory nutrient intake over short (<48 h) time periods when provided with a choice. Individuals did not strongly defend nutrient targets, although there was some evidence for weak regulation. Many weta tended to select high and low protein foods in a ratio similar to their previously identified nutrient optimum. These results suggest that weta have a wide tolerance to nutritional imbalance, and that the time scale of weta nutrient balancing could lie outside of the short time span tested here. A wide tolerance to imbalance is consistent with the intermittent feeding displayed in the wild by weta and may be important in understanding weta foraging patterns in New Zealand forests.  相似文献   

17.
Objective: The Protein‐Leverage Hypothesis proposes that humans regulate their intake of macronutrients and that protein intake is prioritized over fat and carbohydrate intake, causing excess energy ingestion when diets contain low %protein. Here we test in a model animal, the mouse: (i) the extent to which intakes of protein and carbohydrate are regulated; (ii) if protein intake has priority over carbohydrates so that unbalanced foods low in %protein leads to increased energy intake; and (iii) how such variations in energy intake are converted into growth and storage. Methods and Procedures: We fed mice one of five isocaloric foods having different protein to carbohydrate composition, or a combination of two of these foods (N = 15). Nutrient intake and corresponding growth in lean body mass and lipid mass were measured. Data were analyzed using a geometric approach for analyzing intake of multiple nutrients. Results: (i) Mice fed different combinations of complementary foods regulated their intake of protein and carbohydrate toward a relatively well‐defined intake target. (ii) When mice were offered diets with fixed protein to carbohydrate ratio, they regulated the intake of protein more strongly than carbohydrate. This protein‐leverage resulted in higher energy consumption when diets had lower %protein and led to increased lipid storage in mice fed the diet containing the lowest %protein. Discussion: Although the protein‐leverage in mice was less than what has been proposed for humans, energy intakes were clearly higher on diets containing low %protein. This result indicates that tight protein regulation can be responsible for excess energy ingestion and higher fat deposition when the diet contains low %protein.  相似文献   

18.
Sex‐biased resource allocation in eggs is increasingly recognized as one strategy oviparous mothers can employ to invest differentially in one sex, depending on nutritional requirements. Previous studies have used egg size as an index of nutrient allocation, but few have examined egg contents directly. We used molecular sexing of early‐stage ring‐billed gull Larus delawarensis embryos, a species with sexual size dimorphism, to test whether sex‐specific nutrient allocation occurs in ovo. Despite no sex difference in size, eggs with male embryos contained more albumen, while eggs with female embryos contained more yolk, lipid and non‐lipid (protein and carbohydrate). It is unclear why such sex‐biased resource allocation in ovo is utilized by ring‐billed gulls. However, our data indicate that a cursive examination of egg mass or size may not necessarily reflect nutrient allocation strategies mothers use in ovo, and that sex‐biased investment in ovo may be more widespread than currently appreciated.  相似文献   

19.
Abstract. The interactive effects of macronutrient balance [protein (P) : carbohydrate (C) ratio] and dietary dilution by cellulose on nutritional regulation and performance were investigated in the generalist caterpillar Spodoptera littoralis (Boisduval). Caterpillars were reared through the final stadium on one of 20 foods varying factorially in macronutrient content (P + C%: 42, 33.6. 25.2 or 16.8%) and P : C ratio (5 : 1, 2 : 1, 1 : 1, 1 : 2 or 1 : 5). The animals compensate by eating more of diluted foods, but suffer reduced nutrient intake in proportion to the degree of dilution. Increase in food intake with dilution is greater on balanced than imbalanced foods and this is reflected in greater reduction of dry pupal mass with dilution in the latter. Whereas dilution results in a reduction in the amount of whichever macronutrient is in excess in the food, by contrast, the ability to compensate for the deficient macronutrient in the food is unaffected by nutrient imbalance. Excess protein intake due to nutritional imbalance (diets with high P : C ratios) results in a regulatory decrease in the efficiency of retention of ingested nitrogen relative to restricted protein intake on oppositely imbalanced foods (low P : C ratios). By contrast, decreased protein intake due to dietary dilution is associated with a non‐regulatory reduction in the efficiency of retention, irrespective of P : C ratio. Dilution is similarly associated with reduced utilization efficiency of ingested carbohydrate. The ecological implications of these results are discussed.  相似文献   

20.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号