首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

2.
Local adaptation can be strengthened through a diversity of mechanisms that reduce gene flow between contrasting environments. Recent work revealed that mate choice could enhance local adaptation when females preferentially mate with locally adapted males and that such female preferences readily evolve, but the opposing effects of recombination, migration and costs of female preferences remain relatively unexplored. To investigate these effects, we develop a two‐patch model with two genes, one influencing an ecological trait and one influencing female preferences, where both male signals and female preferences are allowed to depend on the match between an individual's ecological trait and the local environment (condition). Because trait variation is limited when migration is rare and the benefits of preferential mating are short‐lived when migration is frequent, we find that female preferences for males in high condition spread most rapidly with intermediate levels of migration. Surprisingly, we find that preferences for locally adapted males spread fastest with higher recombination rates, which contrasts with earlier studies. This is because a stronger preference allele for locally adapted males can only get uncoupled from maladapted ecological alleles following migration through recombination. The effects of migration and recombination depend strongly on the condition of the males being chosen by females, but only weakly on the condition of the females doing the choosing, except when it comes to the costs of preference. Although costs always impede the spread of female preferences for locally adapted males, the impact is substantially lessened if costs are borne primarily by females in poor condition. The abundance of empirical examples of condition‐dependent mate choice combined with our theoretical results suggests that the evolution of mate choice could commonly facilitate local adaptation in nature.  相似文献   

3.
The initial purpose of the project described herein was to assess the preference of female Poecilia latipinna for an artificial novel male trait—an orange‐colored distal fringe added to the caudal fin of an otherwise wild‐type conspecific. Analysis of the preliminary data revealed consistent individual differences in the strength of female preference for either orange‐tailed or wild‐type males. This finding inspired the study's second aim—to evaluate whether the preference for orange‐tailed males observed among a subset of females could spread via mate choice copying to others in the population that initially preferred wild‐type males. Two experiments and a control were conducted wherein females were simultaneously presented with an orange‐tailed and a wild‐type dummy male using a standard dichotomous choice design. In the first experiment, female preference was assessed on two separate occasions in order to characterize the variability and consistency in preference for orange‐tailed versus wild‐type males. The second experiment addressed mate choice copying: Female preference was again assessed on two separate occasions, but involved pairing a model female with the non‐preferred male for a period of time between preference tests. A third set of control tests were conducted using the same protocol as the copying experiment except that subject females were unable to see the model paired with the non‐preferred male. Results showed that, although females collectively preferred neither the orange‐tailed nor the wild‐type dummy male in the first round of preference tests, the majority showed relatively strong individual preferences. The subset of females that preferred the orange‐tailed over the wild‐type male in the first round of testing all maintained their preferences in the second round whether or not they had observed a model in association with the non‐preferred wild‐type male between tests. However, females that preferred the wild type over the orange male in the first round of testing copied the model's choice of the non‐preferred orange‐tailed male in their second round of preference testing. These results highlight the importance of recognizing the likelihood that only a subset of females will express a preference as it first emerges within a population. In such instances, the preference may not be detected at the population level—a point frequently overlooked in studies of mate choice. Additionally, these data highlight the importance of assessing the preferences of individual females and their capacity to drive evolutionary change within populations. Lastly, this study offers evidence of a possible mechanism by which a novel male trait might spread via mate choice copying by exploiting an emerging sensory bias within a subset of females in the population.  相似文献   

4.
Variation in temperature can affect the expression of a variety of important fitness‐related behaviours, including those involved with mate attraction and selection, with consequences for the coordination of mating across variable environments. We examined how temperature influences the expression of male mating signals and female mate preferences—as well as the relationship between how male signals and female mate preferences change across temperatures (signal–preference temperature coupling)—in Enchenopa binotata treehoppers. These small plant‐feeding insects communicate using plantborne vibrations, and our field surveys indicate they experience significant natural variation in temperature during the mating season. We tested for signal–preference temperature coupling in four populations of E. binotata by manipulating temperature in a controlled laboratory environment. We measured the frequency of male signals—the trait for which females show strongest preference—and female peak preference—the signal frequency most preferred by females—across a range of biologically relevant temperatures (18°C–36°C). We found a strong effect of temperature on both male signals and female preferences, which generated signal–preference temperature coupling within each population. Even in a population in which male signals mismatched female preferences, the temperature coupling reinforces predicted directional selection across all temperatures. Additionally, we found similar thermal sensitivity in signals and preferences across populations even though populations varied in the mean frequency of male signals and female peak preference. Together, these results suggest that temperature variation should not affect the action of sexual selection via female choice, but rather should reinforce stabilizing selection in populations with signal–preference matches, and directional selection in those with signal–preference mismatches. Finally, we do not predict that thermal variation will disrupt the coordination of mating in this species by generating signal–preference mismatches at thermal extremes.  相似文献   

5.
A two-locus diploid model of sexual selection is presented in which the two loci govern, respectively, a trait limited in expression in one sex (generally male) and the mating preferences of the other sex (generally female). The viability of a male depends on its genotype at the trait locus. In contrast, all females are equally viable and all individuals are equally fertile with respect to the two loci. Near fixation at both loci, evolution at the mating locus is neutral and hence a new mating preference allele will increase only through random genetic drift or through a correlated response to the increase of a new advantageous trait allele. If, however, a polymorphism is already maintained at the trait locus through overdominance in fitness then the increase of a rare preference allele depends only on the recombination rate between the loci and not on the new preference scheme.  相似文献   

6.
Recent experimental and theoretical evidence suggests that social factors may play an important role in female choice and sexual selection. This is in contrast to the assumption made by most classical sexual selection models that female preferences are entirely determined by genetic factors. This study examined whether female preferences in the poeciliid fish Perugia's Limia (Limia perugiae) are reversible through (i) mate‐choice copying (imitative) behavior, or (ii) a disruption effect (reduced consistency of female preference in response to disruption). Females in binary choice trials were given a mate‐choice copying opportunity by exposing them to a second, model female displaying a preference for a male that was not initially preferred. Females were found to reverse their initial preference significantly more often when presented with an opportunity to observe the model female then in the absence of such an opportunity. In separate trials, females were presented with the opportunity to observe a model female displaying a preference for a male that was initially preferred. No significant difference was observed in the number of reversals between treatments in which females were presented with a copying opportunity that contradicted their initial preference and one that reinforced it. Our results suggest that mate‐choice copying does not contribute significantly to female preferences in L. perugiae and that disruption may reduce the ability of females to choose consistently.  相似文献   

7.
Mate‐choice copying, a social, non‐genetic mechanism of mate choice, occurs when an individual (typically a female) copies the mate choice of other individuals via a process of social learning. Over the past 20 years, mate‐choice copying has consistently been shown to affect mate choice in several species, by altering the genetically based expression of mating preferences. This behaviour has been claimed by several authors to have a significant role in evolution. Because it can cause or increase skews in male mating success, it seems to have the potential to induce a rapid change of the directionality and rate of sexual selection, possibly leading to divergent evolution and speciation. Theoretical work has, however, been challenging this view, showing that copying may decelerate sexual selection and that linkage disequilibrium cannot be established between the copied preference and the male trait, because females copy from unrelated individuals in the population, making an invasion of new and potentially fitter male traits difficult. Given this controversy, it is timely to ask about the real impact of mate‐choice copying in speciation. We propose that a solution to this impasse may be the existence of some degree of habitat selection, which would create a spatial structure, causing scenarios of micro‐allopatry and thus overcoming the problem of the lack of linkage disequilibrium. As far as we are aware, the potential role of mate‐choice copying on fostering speciation in micro‐allopatry has not been tackled. Also important is that the role of mate‐choice copying has generally been discussed as being a barrier to gene flow. However, in our view, mate‐choice copying may actually play a key role in facilitating gene flow, thereby fostering hybridization. Yet, the role of mate‐choice copying in hybridization has so far been overlooked, although the conditions under which it might occur are more likely, or less restricted, than those favouring speciation. Hence, a conceptual framework is needed to identify the exact mechanisms and the conditions under which speciation or hybridization are expected. Here, we develop such a framework to be used as a roadmap for future research at the intersection of these research areas.  相似文献   

8.
The selection pressures by which mating preferences for ornamental traits can evolve in genetically monogamous mating systems remain understudied. Empirical evidence from several taxa supports the prevalence of dual‐utility traits, defined as traits used both as armaments in intersexual selection and ornaments in intrasexual selection, as well as the importance of intrasexual resource competition for the evolution of female ornamentation. Here, we study whether mating preferences for traits used in intrasexual resource competition can evolve under genetic monogamy. We find that a mating preference for a competitive trait can evolve and affect the evolution of the trait. The preference is more likely to persist when the fecundity benefit for mates of successful competitors is large and the aversion to unornamented potential mates is strong. The preference can persist for long periods or potentially permanently even when it incurs slight costs. Our results suggest that, when females use ornaments as signals in intrasexual resource competition, males can evolve mating preferences for those ornaments, illuminating both the evolution of female ornamentation and the evolution of male preferences for female ornaments in monogamous species.  相似文献   

9.
Extensive theoretical and empirical research has focused on male alternative reproductive tactics. In comparison, female alternative tactics have attracted little attention, and further theoretical and empirical research are needed. Using a game theoretical model, we examine female choice alternatives (1) by considering assessment errors in a novel and more realistic manner than done previously, and (2) for the first time, by highlighting the formation of groups of females as an important consequence of copying behavior. We consider two alternatives: direct assessment of male quality by females and female copying of the choice of other females. Assessment and copying are predicted to coexist under a wide variety of circumstances and copying is favored when females make assessment errors, when high-quality males are either common or very rare, and when female fitness declines with the number of other females choosing the same male. We also find that the frequency of copying at equilibrium is predicted to decrease when the presence of other females mating with the same male has a positive effect on female fitness (e.g. through increased male parental effort, decreased predation risk or cooperation among females). Female alternative choice tactics also influence the potential for sexual selection. In our model, when the frequency of copying females is low, the potential for sexual selection can be higher than in the absence of female copying. However, contrary to previous theory, we find that as copying females become more common than assessing females, the potential for sexual selection will be low as more females copy the mate choice of other copiers without assessment.  相似文献   

10.
Perceptual biases explain the origin and evolution of female preference in many species. Some responses that mediate mate choice, however, may have never been used in nonmating contexts. In the fiddler crab, Uca mjoebergi, mate‐searching females prefer faster wave rates and leading wave; however, it remains unclear whether such responses evolved in a mating context (i.e., the preference has effect on the fitness of the female and her offspring that arise from mating with a particular male) or a nonmating contexts (i.e., a female obtains direct benefits through selecting the male with a more detectable trait). Here, we compared the preferences of mate‐searching with those of ovigerous females that are searching for a burrow and do not concern about male “quality.” Results showed that as both mate‐searching and ovigerous females preferentially approached robotic males with faster wave rates. This suggests that wave rate increases detectability/locatability of males, but the mating preference for this trait is unlikely to evolve in the mating context (although it may currently function in mate choice), as it does not provide fitness‐related benefit to females or her offspring. Wave leadership, in contract, was attractive to mate‐searching females, but not ovigerous females, suggesting that female preference for leadership evolves because wave leadership conveys information about male quality. We provide not only an empirical evidence of sensory biases (in terms of the preference for faster wave), but the first experimental evidence that mating context can be the only selection force that mediates the evolution of male sexual traits and female preference (in terms of the preference for leading wave).  相似文献   

11.
In some species, female mate choice is non‐independent as, under certain circumstances, females may copy the mate choice of other nearby females. One standard experimental protocol used to test for mate‐choice copying is the mate‐choice ‘reversal’ protocol. In this protocol, a focal female is allowed to choose between two males as potential mates and then is presented with an opportunity to see another female (i.e. the model female) choose the male that she did not initially choose. The focal is subsequently allowed to again choose between the same set of males. An observed reversal of her initial choice in this second preference test has been previously interpreted as evidence for mate‐choice copying. Alternatively, it has recently been proposed that environmental events, such as seeing the mate choice of nearby females that occur within the visual field of a female actively engaged in mate assessment, may ‘disrupt’ her decision‐making behavior and consequently alter the consistency of her mating preference, and may thus cause mate‐choice reversals. The disruption hypothesis predicts that if a model female is placed near the male that the focal female initially chose, the latter's mate preference would be disrupted and she would subsequently and consistently prefer the male that she initially rejected. Here we examined whether the disruption hypothesis explains mate‐choice copying in the guppy (Poecilia reticulata). Our results do not support this hypothesis, but rather provide further support for mate‐choice copying in the guppy.  相似文献   

12.
Sexual selection when the female directly benefits   总被引:9,自引:0,他引:9  
Why do females of many species mate with males on the basis of traits apparently detrimental to male survival? The answer may lie in the fact that these male traits are correlated with male condition. We consider the argument that high male condition directly benefits female fecundity and/or viability (e.g. through lower transmission of parasites, improved control of resources, or better paternal care). Using a quantitative genetic model we show how female preferences for male traits that indicate condition can evolve, even if the male traits themselves have deleterious effects on both the male and the female's fecundity. So-called ‘arbitrary preferences’ can spread in this way because male traits subject to sexual selection are often under additional selection to become correlated with condition. At equilibrium the positive effects of male condition on a female's fecundity and the negative effects of the male trait on her fecundity are balanced and the female preference is under stabilizing selection. The male trait will often be correlated with viability, but not with fecundity, even though the preference evolved as a result of differences in male fecundity. The mean fecundity of females is not maximized, and can steadily decline as the male trait and female preference evolve. If the male trait has no direct deleterious effects on female fecundity, as may happen in species with no paternal care, female preferences are under continuous directional selection to increase.  相似文献   

13.
Female preference genes for large males in the highly promiscuous moth Utetheisa ornatrix (Lepidoptera: Arctiidae) have previously been shown to be mostly Z‐linked, in accordance with the hypothesis that ZZ–ZW sex chromosome systems should facilitate Fisherian sexual selection. We determined the heritability of both female and male promiscuity in the highly promiscuous moth U. ornatrix (Lepidoptera: Arctiidae) through parent–offspring and grandparent–offspring regression analyses. Our data show that male promiscuity is not sex‐limited and either autosomal or sex‐linked whereas female promiscuity is primarily determined by sex‐limited, Z‐linked genes. These data are consistent with the “sexy‐sperm hypothesis,” which posits that multiple‐mating and sperm competitiveness coevolve through a Fisherian‐like process in which female promiscuity is a kind of mate choice in which sperm‐competitiveness is the trait favored in males. Such a Fisherian process should also be more potent when female preferences are Z‐linked and sex‐limited than when autosomal or not limited.  相似文献   

14.
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

15.
Reinforcement is the process whereby assortative mating evolves due to selection against costly hybridization. Sexual imprinting could evolve as a mechanism of reinforcement, decreasing hybridization, or it could potentially increase hybridization in genetically purebred offspring of heterospecific social pairs. We use deterministic population genetic simulations to explore conditions under which sexual imprinting can evolve through reinforcement. We demonstrate that a sexual imprinting component of female preference can evolve as a one‐allele assortative mating mechanism by reducing the risk of hybridization, and is generally effective at causing trait divergence. However, imprinting often evolves to be a component rather than the sole determinant of female preference. The evolution of imprinting has the unexpected side effect of homogenizing existing innate preference, because the imprinted preference neutralizes any innate preference. We also find that the weight of the imprinting component may evolve to a lower value when migration and divergent selection are strong and the cost of hybridization is low; these conditions render hybridization adaptive for immigrant females because they can acquire locally adaptive genes by mating with local males. Together, these results suggest that sexual imprinting can itself evolve as part of the speciation process, and in doing so has the capacity to promote or retard divergence through complex interactions.  相似文献   

16.
Mate choice by females may be influenced by both advertizing traits of males, and behaviour of other females. Here, a simple genetic and behavioural model studies the advantages of mate‐choice copying. From a genetic point of view, a female preferring to copy others’ mate choice adopts a prudent strategy, because her offspring will inherit the same alleles from their father as the other young in the population. The model predicts that a female should copy others’ mate‐choice, unless she encounters a relatively more attractive male than the one she has observed mating, and the attractiveness of the male reflects his genotype. For low or moderate reliability of male signalling, mate‐copying is always predicted, even if the newcoming male is more attractive than the first male. This effect is attenuated, however, when the number of females that have already chosen the first male increases.  相似文献   

17.
There is increasing evidence that animals can acquire mate preferences through the use of public information, notably by observing (and copying) the mate preferences of others in the population. If females acquire preferences through social mechanisms, sexual selection could act very rapidly to spread the preference and drive elaboration of the preferred trait(s). Although there are reports of 'mate-choice copying' in polygynous species, there is no clear evidence for this process in monogamous species. Here, we investigated whether adult female zebra finches Taeniopygia guttata can socially acquire sexual preferences for individual males and, in a separate study, for a generalized trait (coloured leg bands) of males. In both studies, test females observed males in two simultaneous conditions: a ('chosen') mixed-sex situation in which a male was paired with a (model) female, and a ('unchosen') same-sex situation in which a male was paired with another male. In the first experiment, after two weeks of females observing males, test females significantly preferred individual males who had been paired with another female (i.e. chosen males). In the second experiment, test females significantly preferred novel males that were wearing the same leg band colour as the apparently chosen males. Our findings are consistent with the conclusion that female zebra finches' mate preferences are altered by public information. Our study implies that mate preferences can spread rapidly through populations by social mechanisms, affecting the strength of sexual selection in a monogamous species.  相似文献   

18.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

19.
Close inbreeding may have negative fitness effects. Consequently, organisms have evolved various mechanisms, which enable them to avoid close inbreeding. In no‐choice and choice experiments we assessed whether the predaceous mite Phytoseiulus persimilis Athias‐Henriot (Acari: Phytoseiidae) avoids close inbreeding by kin recognition. No‐choice experiments demonstrated that virgin females more readily accept unrelated males than they accept related ones, which suggests a female preference for unrelated mates. Because each female had been reared in isolation prior to experiments, females most likely imprinted on themselves, and later used self‐referent phenotype matching to assess potential mating partners. In contrast, neither female nor male choice experiments indicated a preference. Analyses of female and male behavior revealed that in choice experiments, female preference for unrelated males was probably confounded by male competition and/or altered by the different ecological context posed by choice experiments.  相似文献   

20.
High male mating investment may favor selection on male mate choice particularly if females vary in quality. Terminal investment strategies constitute a maximal mating effort and have evolved independently in the absence of paternal investment in several spider taxa including the genus Argiope. To test for male mate preferences in the above context, we used the sexually cannibalistic spider A. bruennichi. We varied male state (mating status and post‐maturation age) as well as the competitive context and quantified male mate choice decisions between females of different states and developmental stages in binary choice tests. We found an overall adaptive preference for the virgin against the mated female regardless of male mating state. Furthermore, we demonstrated that older males paid more attention to female fecundity‐related traits than to mating status. In a second set of experiments, we offered males a choice between a virgin and a subadult female and varied the competitive context which had no effect on male decisions. Curiously, a preference for the virgin adult female was only apparent after exclusion of females that matured <3 d prior to the test. Repeated tests of males supported the hypothesis that males do not distinguish between a freshly matured virgin female and a subadult female. Our results show that male spiders execute mate choice based on information collected from female silk strands and that they integrate their own state into mating decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号