共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, more favourable environmental conditions can lead to dramatic increases in both mean fitness and variance in fitness. This results in data that violate the equality-of-variance assumption of anova, a problem that most empiricists would address by log-transforming fitness values. Using heuristic data sets and simple simulations, we show that anova on log-transformed fitness consistently fails to match the outcome of selection in a heterogeneous environment or its sensitivity to environmental frequency. Only anova based on relative fitness within environments accurately predicts the sensitivity of genotype selection to the frequency of alternative environments. Parallel analyses of variance based on absolute fitness and relative fitness can bracket the expected success of alternative genotypes under hard and soft selection, respectively. For example, for Sinapis arvensis growing in full sun and partial shade treatments, families achieving high fitness in the best environment are favoured under hard selection, whereas soft selection favours different families that achieve consistently good performance across environments. Based on these findings, we recommend that log-transformation of fitness should no longer be standard practice in ecological genetics studies. Weighted anova is a preferable method for dealing with unequal variances, and investigators should also make greater use of techniques such as quantile regression or resampling to describe and evaluate fitness variation across heterogeneous environments. 相似文献
2.
Although fitness is central to the evolutionary process, metrics vary by timescale. Different timescales may give rise to different estimates of selection, especially during demographic transitions caused by rapid environmental and socioeconomic change. In this study, we used a dataset of a human population in Finland from 1775 to 1950 to compare two fitness metrics and their estimates of selection pressures, before and during a demographic transition. Both metrics, lifetime reproductive success and an annual metric of individual performance, declined while selection on the ages at first and last reproduction remained nearly constant, favouring individuals with wider reproductive windows. The ability to partition the annual metric into contributions from reproduction and survival revealed the short‐term effects of a famine and the reversal of selection pressure via the survival component of annual fitness. Although the metrics generally agreed, the annual metric detected the effects of environmental variation and demographic change occurring within a generation. 相似文献
3.
论花距对花序松散的倒距兰(Anacamptis laxiflora)雌花繁殖成功率的影响对多花物种而言,花序结构是塑造植物吸引力的首要因素。本研究旨在揭示花序性状对植物雌花繁殖成功率的影响,以及倒距兰(Anacamptis laxiflora,一种采用欺骗性授粉策略的陆生物种)花序上的授粉规律。我们还探究了花序性状与雌花繁殖成功率之间的关系是否会因为周围植被的高度和/或种群密度的影响而改变。我们在一个天然的倒距兰种群中划定了实验区块,对每个区块内的植株个体进行计数,并将各区块按低密度和高密度进行分类;随后,在部分区块内,我们人工清除了植株周围的杂草,从而产生了同等数量的高草丛区块和低草丛区块。我们统计了这些区块中的花序性状和雌花繁殖成功率(即果实数量及其在花序上的位置),使用广义线性混合模型(GLMMs)对统计数据进行了分析,并计算出了选择梯度。我们发现所研究的所有花序性状均对雌花繁殖成功率造成了影响。特别是GLMMs的结果表明,“平均花距”是对繁殖成功规律的最佳预测因子。我们所研究的花序性状受到显著的正向选择作用,但是这些选择趋势与周围植被的高度和种群密度都紧密相关,表明当地环境背景对选择规律的形成有显著影响。雌花繁殖成功率与花朵在花序上的位置无关,这说明传粉者在花序上随机选择花朵,未见其对花序特定部位的偏好。本项研究突显出花序性状对于多花、具有欺骗性的兰花雌花繁殖成功的重要性,并证实了环境背景在调节传粉者介导的选择规律中的主导作用。 相似文献
4.
S. Alizon 《Journal of evolutionary biology》2013,26(9):2051-2056
Micro‐organisms are known to exhibit phenotypic plasticity in response to changes in their environment. Recent studies have shown that a parasite strain can adjust its host exploitation strategies to the presence of unrelated strains, e.g. for Plasmodium chabaudi by adjusting its sex‐ratio. J. Evol. Biol. 2013; 26 : 1370–1378 claims to report a similar plastic response to the presence of unrelated strains in the case of siderophore‐producing bacteria. I argue that she does not provide sufficient evidence to support the interpretation of the plastic response she observes (increasing siderophore production in the presence of cheaters) through a cooperator/cheater framework. I show that known plastic responses to physicochemical factors, such as siderophore or iron concentration, seem to offer a clearer and more parsimonious explanation. Finally, I also challenge the parallel she makes between the process she observes in siderophore‐producing bacteria and compensation in bi‐parental care models. 相似文献
5.
Mark D. Rausher 《Journal of insect physiology》1985,31(11):873-889
Two models that explain variation in behaviour associated with locating and accepting different habitats (host plants) are described and analyzed. One model describes the dynamics of search-mode ontogeny in Battus philenor butterflies. This model predicts that the proportion of females using either of two search modes at any given time reflects an equilibrium between the rate at which females switch from using a narrow-leaf search mode to using a broad-leaf search mode and the rate at which the opposite switch is made. Preliminary data suggest that the model predicts reasonably well the observed seasonal change in predominant search mode in the field. The second model, really a set of related models, describes the dynamics of genes that influence searching behaviour. Several predictions of these models are: (1) gentic variation for proportional allocation of offspring to different habitats should be more common under soft-selection regimes than under hard-selection regimes. (2) Polyphagy should be more common under soft selection than under hard selection. (3) Whether changes in the relative abundances or relative quality of different habitats lead to evolutionary change in apportionment of offspring to habitats depends in a complex way on mode of population regulation, method of search, type of limitation of fecundity and genetic properties of loci affecting preference. Although the two types of models superficially appear to address different types of behavioural variation, they may be used in a complementary fashion to understand the evolution of habitat selection behaviour. 相似文献
6.
Robert McGREGOR 《Evolutionary ecology》1998,12(6):629-642
Phyllonorycter mespilella (Hübner) is a leafmining moth with two stages of larval development: the initial sap-feeding (SF) stage followed by the tissue-feeding (TF) stage. Phenotypic selection by parasitoids on the duration of the SF stage (SF duration) was measured in artificial patches of larvae placed in the field during the diapausing generation. Pretreatment of larvae with different photoperiods allowed creation of patches that varied in the time-course of appearance of TF larvae. The shorter the photoperiod pretreatment, the sooner TF larvae tended to appear. Some patches were left exposed and others were caged to exclude parasitoids. Positive directional selection on SF duration was detected in exposed patches, and no selection was detected in caged patches. Directional selection in exposed patches was caused by both parasitoid oviposition and other unidentified sources of mortality. The other sources of mortality may have included host feeding by parasitoids on TF larvae. A larger proportion of parasitoid eggs were oviposited on TF larvae in patches where TF larvae appeared the earliest, but this variation in parasitoid oviposition did not result in significant differences in directional selection intensity among patches with early, intermediate and late appearance of TF larvae. Although the general form of the fitness function was very similar when compared among patch types, no significant directional selection could be detected in patches where TF larvae appeared late, and the causes of directional selection appeared to vary between patches where TF larvae appeared at early and intermediate dates. 相似文献
7.
Summary The adaptation to a variable environment has been studied within soft and hard selection frameworks. It is shown that an epistatically determined habitat preference, following a Markovian process, always leads to the maintenance of an adaptive polymorphism, in a soft selection context. Although local mating does not alter the conditions for polymorphism maintenance, it is shown that, in that case, habitat selection also leads to the evolution of isolated reproductive units within each available habitat. Habitat selection, however, cannot evolve in the total absence of adaptive polymorphism. This represents a theoretical problem for all models assuming habitat selection to be an initially fixed trait, and means that within a soft selection framework, all the available habitats will be exploited, even the less favourable ones.On the other hand, polymorphism cannot be maintained when selection is hard, even when all individuals select their habitat. Here, the evolution of habitat selection does not need any prerequisite polymorphism, and always leads to the exploitation of only one habitat by the most specialized genotype. It appears then that hard selection can account for the existence of empty habitat and for an easier evolution of habitat specialization. 相似文献
8.
Ray Tobler Joachim Hermisson Christian Schlötterer 《Evolution; international journal of organic evolution》2015,69(7):1745-1759
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. 相似文献
9.
François Massol Florence Débarre 《Evolution; international journal of organic evolution》2015,69(7):1925-1937
Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life‐cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. 相似文献
10.
Santiago F. Elena Richard E. Lenski 《Evolution; international journal of organic evolution》1997,51(4):1058-1067
Six replicate populations of the bacterium Escherichia coli were propagated for more than 10,000 generations in a defined environment. We sought to quantify the variation among clones within these populations with respect to their relative fitness, and to evaluate the roles of three distinct population genetic processes in maintaining this variation. On average, a pair of clones from the same population differed from one another in their relative fitness by approximately 4%. This within-population variation was small compared with the average fitness gain relative to the common ancestor, but it was statistically significant. According to one hypothesis, the variation in fitness is transient and reflects the ongoing substitution of beneficial alleles. We used Fisher's fundamental theorem to compare the observed rate of each population's change in mean fitness with the extent of variation for fitness within that population, but we failed to discern any correspondence between these quantities. A second hypothesis supposes that the variation in fitness is maintained by recurrent deleterious mutations that give rise to a mutation-selection balance. To test this hypothesis, we made use of the fact that two of the six replicate populations had evolved mutator phenotypes, which gave them a genomic mutation rate approximately 100-fold higher than that of the other populations. There was a marginally significant correlation between a population's mutation rate and the extent of its within-population variance for fitness, but this correlation was driven by only one population (whereas two of the populations had elevated mutation rates). Under a third hypothesis, this variation is maintained by frequency-dependent selection, whereby genotypes have an advantage when they are rare relative to when they are common. In all six populations, clones were more fit, on average, when they were rare than when they were common, although the magnitude of the advantage when rare was usually small (~1% in five populations and ~5% in the other). These three hypotheses are not mutually exclusive, but frequency-dependent selection appears to be the primary force maintaining the fitness variation within these experimental populations. 相似文献
11.
The magnitude and direction of phenotypic selection on emergence date and seedling size in Erigeron annuus was measured to determine the heterogeneity of selection among sites and the proportion of fitness variance explained by seedling size and emergence date. Three disturbance treatments (open, annual vegetation, perennial vegetation) were imposed to test the hypothesis of stronger selection on seedlings in competitive environments. Selection was most heterogeneous early in the life cycle, with significant spatial heterogeneity in the magnitude of selection on a local scale. The disturbance treatments affected only fecundity selection gradients and selection was strongest in open plots. Significant variation in the sign of selection differentials on emergence date was observed for establishment and fall viability selection episodes; at later stages selection varied in magnitude but not direction. Seedlings in the earliest cohort experienced high mortality during establishment, but increased size and fecundity later in the life cycle. Both stabilizing and disruptive selection on emergence date were observed during establishment, but in general selection was purely directional. At Stony Brook most selection on emergence date operated indirectly through seedling size, whereas at the Weld Preserve direct selection was stronger. There were persistent effects of both seedling emergence date and rosette diameter on adult fitness components, and October rosette diameter explained 18% of the total phenotypic variance in fecundity. Overall, viability fitness components were much more important than fecundity selection. Winter survivorship was the single most important episode of selection. 相似文献
12.
Maad J 《Evolution; international journal of organic evolution》2000,54(1):112-123
Abstract.— The present study explored phenotypic selection on phenological and morphological reproductive traits in hawkmoth-pollinated Platanthera bifolia (Orchidaceae), a Eurasian perennial herb displaying bisexual, long-spurred flowers. The work was carried out during three flowering seasons (1993–1995) in a Swedish population. Fitness was estimated as the number of pollinia removed (male fitness) and fruits produced (female fitness). Targets and patterns of selection were compared between years and sex functions by the use of multiple linear regression (including correlational selection estimates, i.e., of combination of traits), analysis of covariance, and projection pursuit regression (PPR). Results from the nonparametric surface-fitting-method PPR showed that selection was mostly linear, thus justifying the use of the parametric methods. In all study years, male and female fitness were highest in plants with many flowers. This reflects that flower number sets an upper limit to fitness and that a large inflorescence attracts more pollinators. In 1994, the summer was dry and the average spur length of P. bifolia was shorter than in the other years. In this year, male and female fitness were positively related to spur length, apparently because the spur of short-spurred plants was somewhat too short relative to the tongue length of the local pollinator for optimal pollen export and import. Additionally, the dry weather in 1994 caused a tendency for correlational selection, which was not found in the other years of study. Among small individuals (apparently more sensitive to drought than large ones), early-flowering plants had higher male and female fitness. The results show that patterns of selection may vary both between years and between sex functions in perennial hermaphroditic plants. The present study is one of the first to consider correlational selection in plants, which probably is of common occurrence and deserves to be investigated more. 相似文献
13.
Crean AJ Monro K Marshall DJ 《Evolution; international journal of organic evolution》2011,65(11):3079-3089
Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. 相似文献
14.
Josh Van Buskirk 《Evolution; international journal of organic evolution》2017,71(6):1670-1685
Theory holds that adaptive phenotypic plasticity evolves under spatial or temporal variation in natural selection. I tested this prediction in a classic system of predator‐induced plasticity: frog tadpoles (Rana temporaria) reacting to predaceous aquatic insects. An outdoor mesocosm experiment manipulating exposure to Aeshna dragonfly larvae revealed plasticity in most characters: growth, development, behavior, and external morphology. I measured selection by placing 1927 tadpoles into enclosures within natural ponds; photographs permitted identification of the survivors six to nine days later. Fitness was defined as a linear combination of growth, development, and survival that correlates with survival to age 2 in another anuran species. In enclosures with many predators, selection‐favored character values similar to those induced by exposure to Aeshna in mesocosms. The shift in selection along the predation gradient was strongest for characters that exhibited high predator‐induced plasticity. A field survey of 50 ponds revealed that predator density changes over a spatial scale relevant for movement of individual adults and larvae: 17% of variation in predation risk was among ponds separated by tens to thousands of meters and 81% was among sites ≤10 m apart within ponds. These results on heterogeneity in the selection regime confirm a key tenant of the standard model for the evolution of plasticity. 相似文献
15.
Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of surviving in the presence of predators (an innovation) or if it represents a simple extension of the way noninduced tadpoles survive predation. Tadpoles of Limnodynastes peronii were raised in the presence and absence of predation, which then entered a survival experiment. Induced morphological traits, primarily tail height and tail muscle height, were found to be under selection, indicating that predator-mediated phenotypic plasticity may be adaptive. Although predator-induced animals survived better, the multivariate linear selection gradients were similar between the two tadpole groups, suggesting that predator-mediated phenotypic plasticity is an extension of existing survival strategies. In addition, nonlinear selection gradients indicated a cost of predator-induced plasticity that may limit the ability of phenotypic plasticity to enhance survival in the presence of predators. 相似文献
16.
17.
18.
Diane R. Campbell Nickolas M. Waser Mary V. Price Elizabeth A. Lynch Randall J. Mitchell 《Evolution; international journal of organic evolution》1991,45(6):1458-1467
In the hummingbird-pollinated herb Ipomopsis aggregata, selection through male function during pollination favors wide corolla tubes. We explored the mechanisms behind this selection, using phenotypic selection analysis to compare effects of corolla width on two components of male pollination success, pollinator visit rate and pollen exported per visit. During single visits by captive hummingbirds, flowers with wider corollas exported more pollen, and more dye used as a pollen analogue, to stigmas of recipient flowers. Corolla width was less strongly related to visit rate in the field, and had no direct effect on visit rate after nectar production and corolla length were controlled for. Moreover, the phenotypic selection differential was 80% higher for the effect on pollen exported per visit, suggesting that this is the more important mechanism of selection. 相似文献
19.
Azadeh Laffafian James D. King Aneil F. Agrawal 《Evolution; international journal of organic evolution》2010,64(11):3232-3241
Deleterious alleles constantly enter populations through mutation. Understanding the nature of selection against such alleles is required to assess their impact on populations. In a subdivided population, two distinct aspects of selection are important: the strength and softness of selection. Using Drosophila melanogaster, we estimated both aspects of selection for each of eight loci across two environments. These data allow us to test conflicting predictions about the factors affecting the softness of selection. First, we show that the softness of selection is not determined by ecological conditions alone. Second, we find that resource limitation makes selection stronger but does not make it softer. Third, we find that wild‐type individuals tend to benefit more than mutants from being reared with competitors of low genetic quality. This means that selection is effectively “harder” on mutants than wild types. A model is presented showing that the sensitivities of mutants and wild types to local competitors differentially affect equilibrium mutation frequency and measures of load. 相似文献
20.
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. 相似文献