首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of diversity gradients due to elevation dates back to the foundation of biogeography and ecology. Although elevation-driven patterns of plant diversity have been reported for centuries, uncertainty still exists about the assembly rules that drive these patterns. In this study, we revealed the causal factor of community assemblies for the diversity of tree and herb species along an elevation. To this end, we applied an integrated method using both functional traits and phylogeny, called the mean pairwise functional-phylogenetic distance, to understand the assembly rules for woody and herbaceous species communities along an elevation gradient. At higher elevation sites, woody and herbaceous communities were comprised of species having similar traits. The phylogenetic trends for woody species were consistent with the functional trends; closely related species co-occurred more frequently than expected at higher elevations. Phylogenetic trends for herb species were opposite to the functional trends; species with similar traits but having a random phylogenetic distribution co-occurred at higher elevations. We suggest that the community assembly rules for woody and herb species vary with elevation; and functional constraints due to environmental filtering at higher elevation act as assembly rules along gradients in both woody and herbaceous communities, even though their phylogenetic backgrounds differ.  相似文献   

2.
多倍化(或全基因组加倍)是植物物种形成的重要途径,现存的被子植物可能都发生过一次甚至多次多倍化事件。多倍化传统的定义是染色体数目相对于祖先类群呈整倍性增加。其中最常用的研究方法是核型分析,核型能够提供物种的基本细胞学参数,包括染色体数目、倍性水平、核型不对称性、核型变异系数等。目前核型研究的趋势表现出从物种基本核型参数分析逐渐演化到多类群、多学科交叉融合的特点:一方面植物核型分析从种群、物种、科属的类群到生命之树,探讨染色体核型在各支系的进化特征、趋势以及驱动植物系统进化的细胞学机制;另一方面探讨和分析区域或生态系统植物区系的染色体谱或倍性等细胞学特征,可以探究区域地质环境变化或生态环境对染色体倍性等的影响,或通过区域染色体谱的构建,分析区域植物区系的形成和进化历史。因而,植物核型研究为系统发育、分子系统进化、生命之树以及植物区系地理的起源和演化研究提供了新思路。越来越多的新方法、新手段在植物核型分析与多倍化研究中得到运用,从而揭示了植物类群或植物区系的染色体进化以及细胞地理特征。今后植物细胞学研究趋势会向多学科交叉融合,整合各研究领域证据,从不同水平角度综合分析植物核型多样性形成的原因及意义,从而更加全面地认识和理解植物物种多样化与物种形成原因。  相似文献   

3.
多倍化(或全基因组加倍)是植物物种形成的重要途径,现存的被子植物可能都发生过一次甚至多次多倍化事件。多倍化传统的定义是染色体数目相对于祖先类群呈整倍性增加。其中最常用的研究方法是核型分析,核型能够提供物种的基本细胞学参数,包括染色体数目、倍性水平、核型不对称性、核型变异系数等。目前核型研究的趋势表现出从物种基本核型参数分析逐渐演化到多类群、多学科交叉融合的特点:一方面植物核型分析从种群、物种、科属的类群到生命之树,探讨染色体核型在各支系的进化特征、趋势以及驱动植物系统进化的细胞学机制;另一方面探讨和分析区域或生态系统植物区系的染色体谱或倍性等细胞学特征,可以探究区域地质环境变化或生态环境对染色体倍性等的影响,或通过区域染色体谱的构建,分析区域植物区系的形成和进化历史。因而,植物核型研究为系统发育、分子系统进化、生命之树以及植物区系地理的起源和演化研究提供了新思路。越来越多的新方法、新手段在植物核型分析与多倍化研究中得到运用,从而揭示了植物类群或植物区系的染色体进化以及细胞地理特征。今后植物细胞学研究趋势会向多学科交叉融合,整合各研究领域证据,从不同水平角度综合分析植物核型多样性形成的原因及意义,从而更加全面地认识和理解植物物种多样化与物种形成原因。  相似文献   

4.
Griswold CK  Whitlock MC 《Genetics》2003,165(4):2181-2192
Pleiotropy allows for the deterministic fixation of bidirectional mutations: mutations with effects both in the direction of selection and opposite to selection for the same character. Mutations with deleterious effects on some characters can fix because of beneficial effects on other characters. This study analytically quantifies the expected frequency of mutations that fix with negative and positive effects on a character and the average size of a fixed effect on a character when a mutation pleiotropically affects from very few to many characters. The analysis allows for mutational distributions that vary in shape and provides a framework that would allow for varying the frequency at which mutations arise with deleterious and positive effects on characters. The results show that a large fraction of fixed mutations will have deleterious pleiotropic effects even when mutation affects as little as two characters and only directional selection is occurring, and, not surprisingly, as the degree of pleiotropy increases the frequency of fixed deleterious effects increases. As a point of comparison, we show how stabilizing selection and random genetic drift affect the bidirectional distribution of fixed mutational effects. The results are then applied to QTL studies that seek to find loci that contribute to phenotypic differences between populations or species. It is shown that QTL studies are biased against detecting chromosome regions that have deleterious pleiotropic effects on characters.  相似文献   

5.
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.  相似文献   

6.
Crassulaceae is a mid-sized family of angiosperms, most species of which are herbaceous succulents, usually with 5-merous flowers and one or two whorls of stamens. Although previous phylogenetic studies revealed seven major “clades” in Crassulaceae and greatly improved our understanding of the evolutionary history of the family, relationships among major clades are still contentious. In addition, the biogeographic origin and evolution of important morphological characters delimiting infrafamilial taxa have not been subject to formal biogeographic and character evolution analyses based on a well-supported phylogeny backbone. In this study, we used plastomic data of 52 species, representing all major clades revealed in previous studies to reconstruct a robust phylogeny of Crassulaceae, based on which we unraveled the spatiotemporal framework of diversification of the family. We found that the family may originate in southern Africa and then dispersed to the Mediterranean, from there to eastern Asia, Macaronesia, and North America. The crown age of Crassulaceae was dated at ca. 63.93 million years ago, shortly after the Cretaceous–Paleogene (K-Pg) boundary. We also traced the evolution of six important morphological characters previously used to delimit infrafamilial taxa and demonstrated widespread parallel and convergent evolution of both vegetative (life form and phyllotaxis) and floral characters (number of stamen whorls, petals free or fused, and flower merism). Our results provide a robust backbone phylogeny as a foundation for further investigations, and also some important new insights into biogeography and evolution of the family Crassulaceae.  相似文献   

7.

Background and Aims

The tribe Spermacoceae is essentially a herbaceous Rubiaceae lineage, except for some species that can be described as ‘woody’ herbs, small shrubs to treelets, or lianas. Its sister tribe Knoxieae contains a large number of herbaceous taxa, but the number of woody taxa is higher compared to Spermacoceae. The occurrence of herbaceous and woody species within the same group raises the question whether the woody taxa are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness represents the ancestral state (i.e. primary woodiness). Microscopic observations of wood anatomy are combined with an independent molecular phylogeny to answer this question.

Methods

Observations of wood anatomy of 21 woody Spermacoceae and eight woody Knoxieae species, most of them included in a multi-gene molecular phylogeny, are carried out using light microscopy.

Key Results

Observations of wood anatomy in Spermacoceae support the molecular hypothesis that all the woody species examined are secondary derived. Well-known wood anatomical characters that demonstrate this shift from the herbaceous to the woody habit are the typically flat or decreasing length vs. age curves for vessel elements, the abundance of square and upright ray cells, or even the (near-) absence of rays. These so-called paedomorphic wood features are also present in the Knoxieae genera Otiophora, Otomeria, Pentas, Pentanisia and Phyllopentas. However, the wood structure of the other Knoxieae genera observed (Carphalea, Dirichletia and Triainolepis) is typical of primarily woody taxa.

Conclusions

In Spermacoceae, secondary woodiness has evolved numerous times in strikingly different habitats. In Knoxieae, there is a general trend from primary woodiness towards herbaceousness and back to (secondary) woodiness.Key words: Knoxieae, LM, primary woodiness, Rubiaceae, Rubioideae, secondary woodiness, Spermacoceae, wood anatomy  相似文献   

8.
Question: Knowledge of the interaction between understorey herb and overstorey tree layer diversity is mostly restricted to temperate forests. How do tree layer diversity and environmental variables affect herb layer attributes in subtropical forests and do these relationships change in the course of succession? Do abundance and diversity of woody saplings within the herb layer shift during succession? Location: Subtropical broad‐leaved forests in southeast China (29°8′18″‐29°17′29″N, 118°2′14″118°11′12″E). Methods: A full inventory of the herb layer including all plants below 1‐m height was done in 27 plots (10 × 10 m) from five successional stages (<20, <40, <60, <80 and ≥80 yr). We quantified the contribution of different life forms (herbaceous, woody and climber species) to herb layer diversity and productivity and analysed effects of environmental variables and tree layer diversity on these attributes. Results: Herb layer composition followed a successional gradient, as revealed by non‐metric multidimensional scaling (NMDS), but diversity was not correlated to the successional gradient. There was no correlation of diversity across layers. Herb layer productivity was neither affected by tree layer diversity nor by herb layer diversity. Although abundance of woody species in the herb layer decreased significantly during succession, woody species contributed extraordinarily to herb layer species diversity in all successional stages. All environmental factors considered had little impact on herb layer attributes. Conclusions: The subtropical forest investigated displays an immense richness of woody species in the herb layer while herbaceous species are less prominent. Species composition of the herb layer shows a clear successional pattern, however, the presence or absence of certain species appears to be random.  相似文献   

9.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

10.

Background and Aims

The family Balsaminaceae is essentially herbaceous, except for some woodier species that can be described as ‘woody’ herbs or small shrubs. The family is nested within the so-called balsaminoid clade of Ericales, including the exclusively woody families Tetrameristaceae and Marcgraviaceae, which is sister to the remaining families of the predominantly woody order. A molecular phylogeny of Balsaminaceae is compared with wood anatomical observations to find out whether the woodier species are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness in the family represents the ancestral state for the order (i.e. primary woodiness).

Methods

Wood anatomical observations of 68 Impatiens species and Hydrocera triflora, of which 47 are included in a multigene phylogeny, are carried out using light and scanning electron microscopy and compared with the molecular phylogenetic insights.

Key Results

There is much continuous variation in wood development between the Impatiens species studied, making the distinction between herbaceousness and woodiness difficult. However, the most woody species, unambiguously considered as truly woody shrubs, all display paedomorphic wood features pointing to secondary woodiness. This hypothesis is further supported by the molecular phylogeny, demonstrating that these most woody species are derived from herbaceous (or less woody) species in at least five independent clades. Wood formation in H. triflora is mostly confined to the ribs of the stems and shows paedomorphic wood features as well, suggesting that the common ancestor of Balsaminaceae was probably herbaceous.

Conclusions

The terms ‘herbaceousness’ and ‘woodiness’ are notoriously difficult to use in Balsaminaceae. However, anatomical observations and molecular sequence data show that the woodier species are derived from less woody or clearly herbaceous species, demonstrating that secondary woodiness has evolved in parallel.  相似文献   

11.
沈维  曹敏 《生态学报》2010,30(8):2220-2227
在农业弃耕地上通常会出现由草本植物占优势的演替早期群落。为研究优势草本植物对群落中木本幼苗及群落微环境的影响以及外来入侵植物和本地植物对木本幼苗的影响有何差异,在西双版纳地区选取由外来入侵植物飞机草和本地植物马唐共同占优势的演替早期群落,实施物种清除实验,观测样地中木本幼苗的高增长及死亡补充情况,同时对群落微环境进行观测。结果显示,清除优势种显著提高了木本幼苗的高增长,降低了其死亡率,并且使新增幼苗数量有所提高。清除优势种对0-50cm幼苗高增长和死亡率的影响均大于50-100(或200)cm幼苗。清除处理显著提高了样地的冠层下可见天空比例,但对土壤含水量和土壤养分的影响并不显著。飞机草和马唐均能形成浓密的冠层,通过对光的竞争抑制木本幼苗的生长,且这两者的抑制作用没有显著差异。该地区次生林中常见的先锋树种在研究样地内均有幼苗存在,但其生长却受到优势草本植物的强烈抑制。因此,对演替早期群落中草本植物的控制与管理应同时注意外来入侵物种与本地杂草。  相似文献   

12.
MAJOR CLADES OF THE ANGIOSPERMS   总被引:2,自引:0,他引:2  
Abstract— Our knowledge of fundamental angiosperm interrelationships is still very incomplete. The absence of a narrowly circumscribed gymnosperm outgroup, ideally the sister group, makes character evaluation, necessary for a cladistic analysis, difficult. According to current views the superorder Magnoliiflorae with a number of other groups, for example the monocotyledons, may represent a complex of families near the base of the angiosperms. Interrelationships of groups within the monocotyledons are much better understood than those between groups within the dicotyledons. A cladogram of monocotyledon orders based on earlier work by R. Dahlgren, H. T. Clifford, and F. N. Rasmussen is presented. A data matrix for a sample of the angiosperms with 61 characters for 49 taxa, mostly magnoliifloran and related families, is presented. The characters are polarized mainly according to the current view that the primitive angiosperm morphotype is a woody dicotyledon with strobiloid flowers. As an alternative the matrix is adjusted following W. C. Burger's conjecture that the primitive angiosperm was a herbaceous monocotyledon with trimerous flowers. Both matrices were run in a computerized parsimony analysis, resulting in numerous equally parsimonious solutions. This result is illustrative of the great homoplasy in the available character information, and also of how little actually is known about fundamental angiosperm interrelationships or phylogeny.  相似文献   

13.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

14.
Summary Previous studies have sought to elucidate the relationship between dispersal mode (biotic versus abiotic) and the taxonomic diversification of angiosperm families, but with ambiguous results. In this study, we propose the hypothesis that the combination of (1) the large seed size required of plants germinating in closed, light-poor environments and (2) the necessity to move disseminules away from the maternal plant in order to avoid intraspecific competition, predation and pathogens should favour biotically-dispersed relative to abiotically-dispersed woody arborescent angiosperms, resulting in higher diversification of the former. In this paper, we seek patterns of diversification that support this hypothesis. We examine the association between dispersal mode, growth habit and taxonomic richness of monocotyledon and dicotyledon families using (1) contingency table analyses to detect the effect of dispersal mode on the relative abundances and diversification of woody versus herbaceous taxa and (2) non-parametric analyses of variance to detect the statistical effect of dispersal mode on taxonomic diversification (mean number of species per genus, genera per family and species per family) in monocot and dicot families dominated by biotic or abiotic dispersal. We found a clear statistical effect of dispersal mode on diversification. Among families of woody dicots, dispersal by vertebrates is associated with significantly higher levels of species per genus, genera per family and species per family than is abiotic dispersal. The same pattern is observed among woody monocots, but is not significant at the 0.05 level. Among families of herbaceous monocots and dicots, the situation is reversed, with abiotically-dispersed families exhibiting higher levels of diversification than vertebrate-dispersed families. When woody and herbaceous families are pooled, there is no association between dispersal mode and diversification. These data coincide with evidence from the fossil record to suggest vertebrate dispersal has positively contributed to the diversification of woody angiosperms. We suggest that vertebrate dispersal may have promoted the diversity of extant taxa by reducing the probability of extinction over evolutionary time, rather than by elevating speciation rates. Our results suggest vertebrate dispersal has contributed to, but does not explainin toto, the diversity of living angiosperms.  相似文献   

15.
ABSTRACT: BACKGROUND: The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. RESULTS: Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. DISCUSSION: Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.  相似文献   

16.
Across angiosperms, variable rates of molecular substitution are linked with life-history attributes associated with woody and herbaceous growth forms. As the number of generations per unit time is correlated with molecular substitution rates, it is expected that rates of phenotypic evolution would also be influenced by differences in generation times. Here, we make the first broad-scale comparison of growth-form-dependent rates of niche evolution. We examined the climatic niches of species on large time-calibrated phylogenies of five angiosperm clades and found that woody lineages have accumulated fewer changes per million years in climatic niche space than related herbaceous lineages. Also, climate space explored by woody lineages is consistently smaller than sister lineages composed mainly of herbaceous taxa. This pattern is probably linked to differences in the rate of climatic niche evolution. These results have implications for niche conservatism; in particular, the role of niche conservatism in the distribution of plant biodiversity. The consistent differences in the rate of climatic niche evolution also emphasize the need to incorporate models of phenotypic evolution that allow for rate heterogeneity when examining large datasets.  相似文献   

17.
The discrepancy between theoretical and observed distributions of tree shapes in recent surveys of phylogeny estimates has lead to investigations of possible biological and methodological causes. I investigated whether the phylogenetic quality of characters is related to the tree shape on which they evolve. Simulated evolution revealed shape-related tendencies for characters to indicate correct cladistic relationships; these differences were measured by examining the characters directly, without deriving any phylogeny estimates. Tree stemminess indices correlated strongly with character quality when characters evolved either speciationally or phyletically. Tree balance was a significant correlate of character quality under speciational evolution but not under phyletic evolution. These results help explain the findings of other simulation studies. With additional study of the behavior of evolving characters and their interaction with phylogenetic methods, we might be able to increase the accuracy of tree estimation and compensate for potential biases related to shape. These results give further reason for caution in trusting phylogeny estimates.  相似文献   

18.
The genus Ceratocystis sensu stricto includes important fungal pathogens of woody and herbaceous plants. This genus is distinguished from species in Ceratocystis sensu lato by the presence of Chalara anamorphs. Ascospore shape has been used extensively in delineating Ceratocystis taxa, which show a large variety of ascospore shapes. Sequence analysis of one region of he 18S ribosomal RNA subunit and two regions of the 28S ribosomal RNA subunit showed that there was a majority of multiple substitutions at nucleotide sites and that there was a low transition/transversion ratio, T = 0.72. Both of these results suggest that these are well established, old species. Ascospore morphology, for the most part, was not congruent with the molecular phylogeny, and the use of morphological characters may be misleading in the taxonomy of these species.   相似文献   

19.
The construction and interpretation of gene trees is fundamental in molecular systematics. If the gene is defined in a historical (coalescent) sense, there can be multiple gene trees within the single contiguous set of nucleotides, and attempts to construct a single tree for such a sequence must deal with homoplasy created by conflict among divergent histories. On a larger scale, incongruence is expected among gene tree topologies at different loci of individuals within sexually reproducing species, and it has been suggested that this discordance can be used to delimit species. A practical concern for such topological methods is that polymorphisms may be maintained through numerous cladogenic events; this polymorphism problem is less of a concern for nontopological approaches to species delimitation using molecular data. Although a central theoretical concern in molecular systematics is discordance between a given gene tree and the true "species tree," the primary empirical problem faced in reconstructing taxic phylogeny is incongruence among the trees inferred from different sequences. Linkage relationships limit character independence and thus have important implications for handling multiple data sets in phylogenetic analysis, particularly at the species level, where incongruence among different historically associated loci is expected. Gene trees can also be reconstructed for loci that influence phenotypic characters, but there is at best a tenuous relationship between phenotypic homoplasy and homoplasy in such gene trees. Nevertheless, expression patterns and orthology relationships of genes involved in the expression of phenotypes can in theory provide criteria for homology assessment of morphological characters.  相似文献   

20.
Aims To identify approaches to improve our understanding of, and predictive capability for, mixed tree–grass systems. Elucidation of the interactions, dynamics and determinants, and identification of robust generalizations that can be broadly applied to tree–grass systems would benefit ecological theory, modelling and land management. Methods A series of workshops brought together scientific expertise to review theory, data availability, modelling approaches and key questions. Location Ecosystems characterized by mixtures of herbaceous and woody plant life‐forms, often termed ‘savannas’, range from open grasslands with few woody plants, to woodlands or forests with a grass layer. These ecosystems represent a substantial portion of the terrestrial biosphere, an important wildlife habitat, and a major resource for provision of livestock, fuel wood and other products. Results Although many concepts and principles developed for grassland and forest systems are relevant to these dual life‐form communities, the novel, complex, nonlinear behaviour of mixed tree–grass systems cannot be accounted for by simply studying or modelling woody and herbaceous components independently. A more robust understanding requires addressing three fundamental conundrums: (1) The ‘treeness’ conundrum. What controls the relative abundance of woody and herbaceous plants for a given set of conditions at given site? (2) The coexistence conundrum. How do the life‐forms interact with each other? Is a given woody–herbaceous ratio dynamically stable and persistent under a particular set of conditions? (3) The net primary productivity (NPP) conundrum. How does NPP of the woody vegetation, the herbaceous vegetation, and the total ecosystem (woody + herbaceous) change with changes in the tree–grass ratio? Tests of the theory and conceptual models of determinants of mixed woody–herbaceous systems have been largely site‐ or region‐specific and have seldom been broadly or quantitatively evaluated. Cross‐site syntheses based on data and modelling are required to address the conundrums and identify emerging patterns, yet, there are very few data sets for which either biomass or NPP have been quantified for both the woody and the herbaceous components of tree–grass systems. Furthermore, there are few cross‐site comparisons spanning the diverse array of woody–herbaceous mixtures. Hence, initial synthesis studies should focus on compiling and standardizing a global data base which could be (1) explored to ascertain if robust generalizations and consistent patterns exist; and (2) used to evaluate the performance of savanna simulation models over a range of woody–herbaceous mixtures. Savanna structure and productivity are the result of complex and dynamic interactions between climate, soils and disturbances, notably fire and herbivory. Such factors are difficult to isolate or experimentally manipulate in order to evaluate their impacts at spatial and temporal scales appropriate for assessing ecosystem dynamics. These factors can, however, be evaluated with simulation models. Existing savanna models vary markedly with respect to their conceptual approach, their data requirements and the extent to which they incorporate mechanistic processes. Model intercomparisons can elucidate those approaches most suitable for various research questions and management applications. Conclusion Theoretical and conceptual advances could be achieved by considering a broad continuum of grass–shrub–tree combinations using data meta‐analysis techniques and modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号