首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.  相似文献   

2.
Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.  相似文献   

3.
《Autophagy》2013,9(12):2310-2323
MYO1C, a single-headed class I myosin, associates with cholesterol-enriched lipid rafts and facilitates their recycling from intracellular compartments to the cell surface. Absence of functional MYO1C disturbs the cellular distribution of lipid rafts, causes the accumulation of cholesterol-enriched membranes in the perinuclear recycling compartment, and leads to enlargement of endolysosomal membranes. Several feeder pathways, including classical endocytosis but also the autophagy pathway, maintain the health of the cell by selective degradation of cargo through fusion with the lysosome. Here we show that loss of functional MYO1C leads to an increase in total cellular cholesterol and its disrupted subcellular distribution. We observe an accumulation of autophagic structures caused by a block in fusion with the lysosome and a defect in autophagic cargo degradation. Interestingly, the loss of MYO1C has no effect on degradation of endocytic cargo such as EGFR, illustrating that although the endolysosomal compartment is enlarged in size, it is functional, contains active hydrolases, and the correct pH. Our results highlight the importance of correct lipid composition in autophagosomes and lysosomes to enable them to fuse. Ablating MYO1C function causes abnormal cholesterol distribution, which has a major selective impact on the autophagy pathway.  相似文献   

4.
MYO1C, a single-headed class I myosin, associates with cholesterol-enriched lipid rafts and facilitates their recycling from intracellular compartments to the cell surface. Absence of functional MYO1C disturbs the cellular distribution of lipid rafts, causes the accumulation of cholesterol-enriched membranes in the perinuclear recycling compartment, and leads to enlargement of endolysosomal membranes. Several feeder pathways, including classical endocytosis but also the autophagy pathway, maintain the health of the cell by selective degradation of cargo through fusion with the lysosome. Here we show that loss of functional MYO1C leads to an increase in total cellular cholesterol and its disrupted subcellular distribution. We observe an accumulation of autophagic structures caused by a block in fusion with the lysosome and a defect in autophagic cargo degradation. Interestingly, the loss of MYO1C has no effect on degradation of endocytic cargo such as EGFR, illustrating that although the endolysosomal compartment is enlarged in size, it is functional, contains active hydrolases, and the correct pH. Our results highlight the importance of correct lipid composition in autophagosomes and lysosomes to enable them to fuse. Ablating MYO1C function causes abnormal cholesterol distribution, which has a major selective impact on the autophagy pathway.  相似文献   

5.
Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load.  相似文献   

6.
What do lysosomal storage disorders such as mucolipidosis type IV have in common with Ebola, cancer cell migration, or LDL-cholesterol trafficking? LDL-cholesterol, certain bacterial toxins and viruses, growth factors, receptors, integrins, macromolecules destined for degradation or secretion are all sorted and transported via the endolysosomal system (ES). There are several pathways known in the ES, e.g. the degradation, the recycling, or the retrograde trafficking pathway. The ES comprises early and late endosomes, lysosomes and recycling endosomes as well as autophagosomes and lysosome related organelles. Contact sites between the ES and the endoplasmic reticulum or the Golgi apparatus may also be considered part of it. Dysfunction of this complex intracellular machinery can cause or contribute to the development of a number of diseases ranging from neurodegenerative, infectious, or metabolic diseases to retinal and pigmentation disorders as well as cancer and autophagy-related diseases. Endolysosomal ion channels such as mucolipins (TRPMLs) and two-pore channels (TPCs) play an important role in intracellular cation/calcium signaling and homeostasis and appear to critically contribute to the proper function of the endolysosomal trafficking network.  相似文献   

7.
8.
Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of β2-microglobulin (β2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented β2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented β2m fibrils did not, however, cause cell death. Instead, fragmented β2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway.  相似文献   

9.
Irgm1 (LRG-47) is an interferon-inducible Golgi membrane associated GTPase of the mouse whose disruption causes susceptibility to many different intracellular pathogens. Irgm1 has been variously interpreted as a regulator of homologous effector GTPases of the IRG family, a regulator of phagosome maturation and as an initiator of autophagy in interferon-induced cells. We find that endogenous Irgm1 localises to late endosomal and lysosomal compartments in addition to the Golgi membranes. The targeting motif known to be required for Golgi localisation is surprisingly also required for endolysosomal localisation. However, unlike Golgi localisation, localisation to the endolysosomal system also requires the functional integrity of the nucleotide binding site, and thus probably reflects transient activation. Golgi localisation is lost when Irgm1 is tagged at either N- or C-termini with EGFP, while localisation to the endolysosomal system is relatively favoured. N-terminally tagged Irgm1 localises predominantly to early endosomes, while C-terminally tagged Irgm1 localises to late endosomes and lysosomes. Both these anomalous distributions are reversed by inactivation of the nucleotide binding site, and the tagged proteins both revert to Golgi membrane localisation. Irgm1 is the first IRG protein to be found associated with the endolysosomal membrane system in addition to either Golgi (Irgm1 and Irgm2) or ER (Irgm3) membranes, and we interpret the result to be in favour of a regulatory function of IRGM proteins at cellular membrane systems. In future analyses it should be borne in mind that tagging of Irgm1 leads to loss of Golgi localisation and enhanced localisation on endolysosomal membranes, probably as a result of constitutive activation.  相似文献   

10.
Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover and signaling.  相似文献   

11.
Endosomal trafficking of receptors and associated proteins plays a critical role in signal processing. Until recently, it was thought that trafficking was shut down during cell division. Thus, remarkably, the regulation of trafficking during division remains poorly characterized. Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric division. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing endosomal degradation and recycling pathways. As cells progress through metaphase, loss of CDK1 activity permits differential degradation and targeted recycling of stored receptors, leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may facilitate rapid reestablishment of signaling competence in nascent daughter cells. However, mutations that limit or enhance the release of stored signaling components could alter daughter cell fate or behavior thereby promoting oncogenesis.

This study provides fundamental insights into the crosstalk between cell division and signaling, with implications for cancer. High-resolution in vivo analysis reveals that dividing cells sequester signal receptor proteins into internal compartments; stored receptors are then redistributed as cells complete division.  相似文献   

12.
P-type adenosine triphosphatases (ATPases) of the Drs2p family (P4-ATPases) are multipass transmembrane proteins required to generate and maintain phospholipid asymmetry in membrane bilayers. In Saccharomyces cerevisiae , several members of this family control distinct transport events within the endosomal and secretory pathways. Comparatively, little is known about the functions of P4-ATPases in multicellular organisms. In this study, we analyzed the role of the Caenorhabditis elegans Drs2p homologue transbilayer amphipath transporter (TAT)-1 in intracellular trafficking. tat-1 is expressed in many tissues including the intestine, the epidermis and the nervous system. In intestinal cells, tat-1 loss-of-function mutants accumulate large vacuoles of mixed endolysosomal identity positive for the lysosomal protein LMP-1. In addition, they lack the same class of storage granules as lmp-1 mutants, suggesting that part of the tat-1 phenotype might result from LMP-1 sequestration in an aberrant compartment. Epidermal cells mutant for tat-1 contain acidified giant hybrid multivesicular bodies probably corresponding to endolysosomal intermediate compartments or deficient lysosomes. Finally, TAT-1 is required for yolk uptake in oocytes and an early step of fluid-phase endocytosis in the intestine. Hence, TAT-1 is required at multiple steps of the endolysosomal pathway, at least in part by ensuring proper trafficking of cell-specific effector proteins.  相似文献   

13.
Internalized membrane proteins are either transported to late endosomes and lysosomes for degradation or recycled to the plasma membrane. Although proteins involved in trafficking and sorting have been well studied, far less is known about the lipid molecules that regulate the intracellular trafficking of membrane proteins. We studied the function of sphingosine kinases and their metabolites in endosomal trafficking using Drosophila melanogaster photoreceptors as a model system. Gain- and loss-of-function analyses show that sphingosine kinases affect trafficking of the G protein-coupled receptor Rhodopsin and the light-sensitive transient receptor potential (TRP) channel by modulating the levels of dihydrosphingosine 1 phosphate (DHS1P) and sphingosine 1 phosphate (S1P). An increase in DHS1P levels relative to S1P leads to the enhanced lysosomal degradation of Rhodopsin and TRP and retinal degeneration in wild-type photoreceptors. Our results suggest that sphingosine kinases and their metabolites modulate photoreceptor homeostasis by influencing endolysosomal trafficking of Rhodopsin and TRP.  相似文献   

14.
The Gram-negative bacterium Shigella flexneri invades the colonic epithelium and causes bacillary dysentery. S. flexneri requires the virulence factor invasion plasmid antigen B (IpaB) to invade host cells, escape from the phagosome and induce macrophage cell death. The mechanism by which IpaB functions remains unclear. Here, we show that purified IpaB spontaneously oligomerizes and inserts into the plasma membrane of target cells forming cation selective ion channels. After internalization, IpaB channels permit potassium influx within endolysosomal compartments inducing vacuolar destabilization. Endolysosomal leakage is followed by an ICE protease-activating factor-dependent activation of Caspase-1 in macrophages and cell death. Our results provide a mechanism for how the effector protein IpaB with its ion channel activity causes phagosomal destabilization and induces macrophage death. These data may explain how S. flexneri uses secreted IpaB to escape phagosome and kill the host cells during infection and, may be extended to homologs from other medically important enteropathogenic bacteria.  相似文献   

15.
Melanocytes synthesize and store melanin within tissue-specific organelles, the melanosomes. Melanin deposition takes place along fibrils found within these organelles and fibril formation is known to depend on trafficking of the membrane glycoprotein Silver/Pmel17. However, correctly targeted, full-length Silver/Pmel17 cannot form fibers. Proteolytic processing in endosomal compartments and the generation of a lumenal Mα fragment that is incorporated into amyloid-like structures is also essential. Dominant White (DWhite), a mutant form of Silver/Pmel17 first described in chicken, causes disorganized fibers and severe hypopigmentation due to melanocyte death. Surprisingly, the DWhite mutation is an insertion of three amino acids into the transmembrane domain; the DWhite-Mα fragment is unaffected. To determine the functional importance of the transmembrane domain in organized fibril assembly, we investigated membrane trafficking and multimerization of Silver/Pmel17/DWhite proteins. We demonstrate that the DWhite mutation changes lipid interactions and disulfide bond-mediated associations of lumenal domains. Thus, partitioning into membrane microdomains and effects on conformation explain how the transmembrane region may contribute to the structural integrity of Silver/Pmel17 oligomers or influence toxic, amyloidogenic properties.  相似文献   

16.
Cell surface proteases have been demonstrated to play an important role in facilitating cell invasion into the extracellular matrix and may contribute significantly to extracellular matrix degradation by metastatic cancer cells. Abundant expression of these enzymes is associated with poor prognosis. Thus, protease inhibitors that repress cell surface proteases may be applicable to cancer therapy. Because soybean Kunitz-type trypsin inhibitor has been found to induce apoptotic death of human leukemia Jurkat cells, anti-leukemia activity of Bungarus multicinctus protease inhibitor-like protein-1 (PILP-1) is thus examined. PILP-1 induced apoptosis of human leukemia U937 cells, characteristic of loss of mitochondrial membrane potential, degradation of procaspase-8, and production of t-Bid. FADD down-regulation neither restored viability of PILP-1-treated cells nor attenuated production of active caspase-8 and t-Bid in PILP-1-treated cells, suggesting that the death receptor-mediated pathway was not involved in the cytotoxicity of PILP-1. It was found that PILP-1-evoked p38 MAPK activation and ERK inactivation led to PILP-1-induced cell death and down-regulation of ADAM17. Knockdown of ADAM17 by siRNA induced death of U937 cells and inactivation of Lyn and Akt. Immunoprecipitation suggested that ADAM17 and Lyn form complexes. Overexpression of ADAM17, LynY507F (gain of function), and constitutively active Akt suppressed the cytotoxic effects of PILP-1. PILP-1-elicited inactivation of Lyn and Akt was abrogated in cells with overexpressed ADAM17 or LynY507F. Taken together, our data indicate that ADAM17-mediated activation of Lyn/Akt maintains the viability of U937 cells and that suppression of the pathway is responsible for PILP-1-induced apoptosis.  相似文献   

17.
Cathepsin E, an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, has an important role in immune responses. However, little is known about the precise roles of cathepsin E in this system. Here we report that cathepsin E deficiency (CatE(-/-)) leads to a novel form of lysosome storage disorder in macrophages, exhibiting the accumulation of the two major lysosomal membrane sialoglycoproteins LAMP-1 and LAMP-2 and the elevation of lysosomal pH. These striking features were also found in wild-type macrophages treated with pepstatin A and Ascaris inhibitor. Whereas there were no obvious differences in their expression, biosynthesis, and trafficking between wild-type and CatE(-/-) macrophages, the degradation rates of these two membrane proteins were apparently decreased as a result of cathepsin E deficiency. Because there was no difference in the vacuolar-type H(+)-ATPase activity in both cell types, the elevated lysosomal pH in CatE(-/-) macrophages is most likely due to the accumulation of these lysosomal membrane glycoproteins highly modified with acidic monosaccharides, thereby leading to the disruption of non-proton factors controlling lysosomal pH. Furthermore, the selective degradation of LAMP-1 and LAMP-2, as well as LIMP-2, was also observed by treatment of the lysosomal membrane fraction isolated from wild-type macrophages with purified cathepsin E at pH 5. Our results thus suggest that cathepsin E is important for preventing the accumulation of these lysosomal membrane sialoglycoproteins that can induce a new form of lysosomal storage disorder.  相似文献   

18.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.  相似文献   

19.
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.  相似文献   

20.
跨膜蛋白106A (transmembrane protein 106A, TMEM106A)是本中心首先鉴定的与细胞死亡相关的分子。体内外的功能研究证明,TMEM106A在胃癌细胞的高表达能够明显抑制肿瘤细胞的生长,并诱导细胞死亡。本研究利用组织芯片和免疫组化的方法,发现TMEM106A蛋白在癌旁非肿瘤组织中高表达,主要定位在胞质,而在肝癌细胞中低表达或者不表达。进一步的功能研究证明TMEM106A在肝癌细胞系HepG2中高表达能够降低细胞活力、诱导胞质空泡化以及细胞周期阻滞在G2/M期,最终细胞死亡。胞质聚集的空泡表现为单层膜,液泡内基本不含亚细胞器结构以及高电子密度的聚集物。本研究首次证明TMEM106A能够引起巨泡样细胞死亡,其作用机制需要进一步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号