首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17–0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.  相似文献   

2.
Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes—PRDM16, PAX3, TP63, C5orf50, and COL17A1—in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.  相似文献   

3.

Background and Aims

In perennial plants (especially post-fire resprouters), extant populations may reflect recruitment events in the distant past. This is true of hybrid zones formed by two Banksia species of swamps and woodlands in south-eastern Australia, Banksia robur and B. oblongifolia. Both resprout after fire but recruitment is dependent on periodic fires. Although plants of intermediate morphology have also been identified as hybrids using allozyme markers, the extent of ongoing hybridization is unknown. This study investigates whether both microsatellite markers and morphological measurements can be used to distinguish between the two species and their hybrids. A recent recruitment event and microsatellite markers allow the frequency of ongoing hybridization to be estimated, and also the effects of environmental variation on the morphology of plants and seedlings to be tested.

Methods

Variation at seven microsatellite loci was scored and seven leaf characteristics within putatively pure stands and mixed stands of both species were measured, revealing that the two species were genetically and morphologically distinct and that mixed stands also contained genetically and sometimes morphologically distinct hybrids. An opportunity created by wildfires was used to analyse the genetics and morphometrics of adults and seedlings from two hybrid zones.

Key Results

Approximately 9 % of adults and 21 % of seedlings were identified as genetic hybrids in both hybrid zones. Within these sites, the genotype of mature plants correlated well with morphology, except for some hybrid plants that had parental morphology. However, seedling morphology was highly variable and insufficient to describe the composition of the hybrid zone in this cohort. Greater phenotypic plasticity was evident among seedlings growing within the hybrid zones than seedlings growing in pots.

Conclusions

The hybrid zones are complex and the range of genotypes detected in seedlings reveals both continuing hybridization and introgression.  相似文献   

4.
Topologically conservative morphological transformations typify the succession of species in the fossil record and also typify more subtle morphological variation within species. Isolation and quantification of morphological variation along its various intermingled modes becomes increasingly difficult as the structures under consideration increase in complexity. Here, we describe a comparative morphometric and genomic study in dogs in which complex three-dimensional craniofacial variation is mathematically distilled into simpler geometric components to test the hypothesis that incremental mutations at developmental loci result in simple geometric deformations of morphology. Combinations of candidate transforms are computationally evaluated for their ability to accurately transform a reference three-dimensional skull model into those of distinct breeds. A set of five simple basis functions are found to be sufficient to describe most craniofacial variation among dogs. Allele lengths of amino acid repeat length variants in developmental regulator genes, which frequently have quantitative effects on phenotype, were compared to geometric terms using Pearson correlation and regression. The coordinated quantitative representation of both phenotype and genotype improves the statistical power for the detection of causative genotype–phenotype relationships and enabled the characterization of the influence of Runx-2 coding repeat length on craniofacial variation among domestic dogs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Bones of the face and cranial vault meet at sutural boundaries. These sutures are of great importance for craniofacial growth. Although the effects that the sutures have on modulating craniofacial strains have been investigated, how sutural fusion influences primate craniofacial biomechanics and adaptation are less considered. Confounding this problem is the lack of any systematic data on patterns of craniofacial sutural fusion from animals of known age and sex. This study examined the status of 28 sutures in Macaca mulatta skulls from a collection of animals of known age and sex from Cayo Santiago, Puerto Rico. Survival analysis showed that most animals died before all sutures fused. There was high variation in the age at which individual sutures or sutural sections were fused in M. mulatta, and significant differences in the amount of sutural fusion among regions and between males and females. Intensive fusion of sutures took place between ages 5 and 15. Sutures in the facial area tended to be less fused than in the cranial vault. Between adolescence and adulthood, males tended to have more sutural fusion than females, especially in the facial area. These differences might be biomechanical adaptations during ontogeny to craniofacial sexual dimorphism. These findings enrich our understanding of variation in sutural morphology in rhesus monkeys. Comparative information across primate species is essential for understanding the biomechanics of craniofacial form throughout primate evolution.  相似文献   

6.
Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10−8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10−10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.  相似文献   

7.
A fundamental challenge of morphology is to identify the underlying evolutionary and developmental mechanisms leading to correlated phenotypic characters. Patterns and magnitudes of morphological integration and their association with environmental variables are essential for understanding the evolution of complex phenotypes, yet the nature of the relevant selective pressures remains poorly understood. In this study, the adaptive significance of morphological integration was evaluated through the association between feeding mechanics, ingestive behavior and craniofacial variation. Five capuchin species were examined, Cebus apella sensu stricto, Cebus libidinosus, Cebus nigritus, Cebus olivaceus and Cebus albifrons. Twenty three-dimensional landmarks were chosen to sample facial regions experiencing high strains during feeding, characteristics affecting muscular mechanical advantage and basicranial regions. Integration structure and magnitude between and within the oral and zygomatic subunits, between and within blocks maximizing modularity and within the face, the basicranium and the cranium were examined using partial-least squares, eigenvalue variance, integration indices compared inter-specifically at a common level of sampled population variance and cluster analyses. Results are consistent with previous findings reporting a relative constancy of facial and cranial correlation patterns across mammals, while covariance magnitudes vary. Results further suggest that food material properties structure integration among functionally-linked facial elements and possibly integration between the face and the basicranium. Hard-object-feeding capuchins, especially C.apella s.s., whose faces experience particularly high biomechanical loads are characterized by higher facial and cranial integration especially compared to C.albifrons, likely because morphotypes compromising feeding performance are selected against in species relying on obdurate fallback foods. This is the first study to report a link between food material properties and facial and cranial integration. Furthermore, results do not identify the consistent presence of cranial modules yielding support to suggestions that despite the distinct embryological imprints of its elements the cranium of placental mammals is not characterized by a modular architecture.  相似文献   

8.
A two-step method is proposed to get reliable associations between morphology and genotype in clonal assemblages in which more than two predominantly parthenogenetic species are thought to coexist with hybrids. In dataset 1, the genetic relationships among clones of the Daphnia longispina hybrid complex from seven prealpine lakes in southern Germany were studied based on the variation at 21 enzyme loci. The spatial arrangement in the multidimensional scaling plot revealed a reticulate pattern among three presumably parental species, D. cucullata, D. galeata and D. hyalina, and three hybrid groups, D. cucullata/galeata, D. cucullata/hyalina and D. galeata/hyalina. The Got1 locus was believed to be a discriminating factor between species and hybrids (cf. Wolf and Mort, 1986). However, this locus is more variable, and 57% of the clones would have been misidentified using it. Moreover, the morphological variation within genetically defined groups is also higher than previously assumed. In dataset 2, the revision of morphological and genetic markers greatly improved the association between morphology and genotype in newly collected animals. The spatial arrangement of clones in multidimensional scaling plots and morphological asymmetries to parents suggest both, different degrees of introgression and bidirectional hybridization. Most unexpected genotypes were found in the cxh hybrid group, suggesting that F1-hybrids are fertile. The results showed (1) that the clonal diversity was very high (2) that detailed analyses of multiple morphological and allozyme markers are necessary to resolve taxonomic relationships within clonal assemblages consisting of multiple species, hybrids and differently introgressed backcrosses, and (3) that the three original species seem to have sufficient within-species recombination and a low enough rate of backcrossing to allow taxonomic identification. It must remain undecided if the present situation is locally restricted, if it is stable or represents a transient situation which could lead to either a consolidation of the three species by gradual elimination of the hybrids, to a taxonomic breakdown, or to hybrid speciation.  相似文献   

9.
10.
Many species differ genetically, physiologically, and morphologically between geographically distinct populations, typically in response to variation in ecological and climatic variables. Little is known, however, about geographical variation in sperm morphology. Sperm morphology is under strong sexual selection, has been shown to evolve rapidly, and often co-varies with other reproductive traits (e.g., testis size or mating system) that differ between populations in some species. The aim of this study was to establish whether sperm morphology varies between populations of the red-winged blackbird (Agelaius phoeniceus), a species with an enormous breeding range and marked inter-population variation in both body size and mating system. We found (1) highly significant variation in sperm morphology among study sites, (2) a gradual increase in sperm length from the southwest to the northeast of the breeding range, and (3) a strong negative association between sperm length and body size. However, the relationship with the mating system remains unclear. Several hypotheses to explain these patterns are proposed.  相似文献   

11.
Eastern wolves have hybridized extensively with coyotes and gray wolves and are listed as a ‘species of special concern’ in Canada. However, a distinct population of eastern wolves has been identified in Algonquin Provincial Park (APP) in Ontario. Previous studies of the diverse Canis hybrid zone adjacent to APP have not linked genetic analysis with field data to investigate genotype‐specific morphology or determine how resident animals of different ancestry are distributed across the landscape in relation to heterogeneous environmental conditions. Accordingly, we studied resident wolves and coyotes in and adjacent to APP to identify distinct Canis types, clarify the extent of the APP eastern wolf population beyond the park boundaries and investigate fine‐scale spatial genetic structure and landscape–genotype associations in the hybrid zone. We documented three genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves and coyotes. We also documented a substantial number of hybrid individuals (36%) that were admixed between 2 or 3 of the Canis types. Breeding eastern wolves were less common outside of APP, but occurred in some unprotected areas where they were sympatric with a diverse combination of coyotes, gray wolves and hybrids. We found significant spatial genetic structure and identified a steep cline extending west from APP where the dominant genotype shifted abruptly from eastern wolves to coyotes and hybrids. The genotypic pattern to the south and northwest was a more complex mosaic of alternating genotypes. We modelled genetic ancestry in response to prey availability and human disturbance and found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Our results clarify the structure of the Canis hybrid zone adjacent to APP and provide unique insight into environmental conditions influencing hybridization dynamics between wolves and coyotes.  相似文献   

12.
Despite the well acknowledged phenomenon that the biology of marine teleost fish larvae is much different from that of juvenile and adult conspecifics, very little is known about the changes in design of the feeding apparatus as larvae develop from hatching through metamorphosis. Furthermore, our understanding of the consequences of these developmental changes for feeding performance is very limited. In this study, we examined the relationship between the development of the feeding apparatus and feeding performance in larvae of Amphiprion ocellaris and Pseudochromis fridmani using cluster analysis, multi-dimensional scaling (nMDS), and canonical correspondence analysis (CCA). Several patterns emerge from our analyses. First, the state of development of the feeding apparatus increased in complexity through ontogeny, from a simple, hyoid-driven system at the onset of exogenous feeding to a more complex feeding system involving all adult functional elements of the cranium just prior to metamorphosis. Although the feeding apparatus converged to the hyoid-opercular-mandible linkage state around metamorphosis in both species, P. fridmani had a lesser developed hyoid-mandible linkage system relative to A. ocellaris at the onset of first-feeding. Second, first-feeding larvae fed on smaller, less elusive zooplankton. In contrast, larvae that survived beyond the first-feeding stage fed on more diverse prey types, including larger, more elusive zooplankton. Third, intra- and inter-specific variation in the development of the feeding apparatus is associated with variation in feeding performance. The post-hatch developmental trajectory in both species showed a pattern consistent with stage (i.e., ontogenetic state)-specific shifts in morphology and performance. Furthermore, the number of developmental transitions in both feeding functional morphology and feeding performance differ between species that exhibit contrasting incubation periods.  相似文献   

13.
The three members of the Montastraea annularis complex (M. annularis, M. franksi, and M. faveolata) are dominant reef builders in the western Atlantic whose species status has been controversial for over a decade. Although differences in colony morphology and reproductive characteristics exist, interspecific fertilizations are possible in the laboratory and genetic differentiation is slight. Here we compare the three taxa genetically and morphologically in Panama and the Bahamas, widely separated locations spanning most of their geographic ranges. In Panama, analyses of three AFLP loci, a noncoding region of the mitochondrial genome, and ITS sequences reveal that M. faveolata is strongly differentiated genetically. Discriminant function analysis also indicates no overlap with the other two species in the fine structure of the corallites that comprise the colony. Genetic analyses of larvae from interspecific crosses between M. faveolata and the other two taxa confirmed the hybrid status of the larvae, but no examples of the most probable F1 genotype were observed in the field. Although M. annularis and M. franksi were more similar, they also exhibited strong frequency differences at two AFLP loci and in the mitochondrial noncoding region, as well as distinct corallite structure. In the Bahamas, in contrast, the three taxa exhibited overlapping morphologies. Montastraeafranksi and M. annularis were indistinguishable genetically, and M. faveolata was distinct at fewer genetic loci. Once again, however, the most probable F1 genotype involving M. faveolata was not observed. Geographic differences between Panama and the Bahamas explain why past studies have come to different conclusions concerning the status of the three species. In general, the genetic and morphological data suggest a north to south hybridization gradient, with evidence for introgression strongest in the north. However, reproductive data show no such trend, with intrinsic barriers to gene flow comparable or stronger in the north.  相似文献   

14.
Evolutionary theory and observation predict wider phenotypic variation in hybrids than parental species. Emergent phenotypic novelty in hybrids may in turn drive new adaptations or speciation by breaking parental phenotypic constraints. Primate hybridization is often documented through genetic evidence, but knowledge about the primate hybrid phenotype remains limited due to a small number of available studies on hybrid primate morphology. Here, we examine pelage and morphometric variation in two Brazilian marmoset species (Callithrix penicillata and C. geoffroyi) and their hybrids. Hybrids were sampled in an anthropogenic hybrid zone in the municipality of Viçosa, Minas Gerais state, Brazil. We analyzed hybrid facial and body pelage color variation, and compared 13 morphometric measures between hybrids and parental species. Five different hybrid facial morphotypes were observed, varying from intermediate to parental-like. Hybrid facial morphotypes were biased towards C. penicillata, suggesting that the pelage of this species may be dominant to that of C. geoffroyi in this context, and indicating that mate preference, and therefore gene flow/introgression, may be biased towards C. penicillata within the hybrid zone. Hybrid morphometric features were on average intermediate to parental species traits, but transgressive hybrids were also observed, suggesting that morphometric variation for the studied traits is consistent with Rieseberg’s complementary allele model. Finally, we observed a decoupling of facial patterning and size/shape in hybrids, relative to parent phenotypes, suggesting that an important factor driving phenotypic novelty within the Viçosa marmoset hybrid zone might be the loosening of evolutionary constraints on phenotypic trait integration.  相似文献   

15.
Leaché AD  Cole CJ 《Molecular ecology》2007,16(5):1035-1054
We investigated a hybrid zone between two major lineages of fence lizards (Sceloporus cowlesi and Sceloporus tristichus) in the Sceloporus undulatus species complex in eastern Arizona. This zone occurs in an ecotone between Great Basin Grassland and Conifer Woodland habitats. We analysed spatial variation in mtDNA (N=401; 969 bp), chromosomes (N=217), and morphology (N=312; 11 characters) to characterize the hybrid zone and assess species limits. A fine-scale population level phylogenetic analysis refined the boundaries between these species and indicated that four nonsister mtDNA clades (three belonging to S. tristichus and one to S. cowlesi) are sympatric at the centre of the zone. Estimates of cytonuclear disequilibria in the population closest to the centre of the hybrid zone suggest that the S. tristichus clades are randomly mating, but that the S. cowlesi haplotype has a significant nonrandom association with nuclear alleles. Maximum-likelihood cline-fitting analyses suggest that the karyotype, morphology, and dorsal colour pattern clines are all coincident, but the mtDNA cline is skewed significantly to the south. A temporal comparison of cline centres utilizing karyotype data collected in the early 1970s and in 2002 suggests that the cline may have shifted by approximately 1.5 km to the north over a 30-year period. The recent northward expansion of juniper trees into the Little Colorado River Basin resulting from intense cattle overgrazing provides a plausible mechanism for a shifting hybrid zone and the introgression of the mtDNA haplotypes, which appear to be selectively neutral. It is clear that complex interactions are operating simultaneously in this contact zone, including the formation of hybrids between populations within S. tristichus having diagnostic mtDNA, morphology, karyotypes, and dorsal colour patterns, and secondary contact between these and a distantly related yet morphologically cryptic mtDNA lineage (S. cowlesi).  相似文献   

16.
We present a developmental perspective on the concept of phylotypic and phenotypic stages of craniofacial development. Within orders of avians and mammals, a phylotypic period exists when the morphology of the facial prominences is minimally divergent. We postulate that species-specific facial variations arise as a result of subtle shifts in the timing and the duration of molecular pathway activity (e.g., heterochrony), and present evidence demonstrating a critical role for Wnt and FGF signaling in this process. The same molecular pathways that shape the vertebrate face are also implicated in craniofacial deformities, indicating that comparisons between and among animal species may represent a novel method for the identification of human craniofacial disease genes.  相似文献   

17.
Conodont animals were early jawless vertebrates equipped with a feeding apparatus composed of several tooth‐like elements. The P1 elements, at the rear of the apparatus, were characterized by a robust shape and rapid morphological evolution. Occlusion occurred between paired right and left P1 elements, occasioning some bilateral asymmetry, which, together with allometric growth, may partially obliterate the temporal differences. The present study aims to disentangle these different components of morphological variation in Late Devonian Polygnathus P1 conodont elements. An extensive 2D geometric morphometric analysis of the platform shape was performed through the Famennian record of two outcrops. This analysis was completed by a 3D study on a subset of conodont elements. The 2D and 3D morphometric quantifications provided highly congruent results, showing that the 2D shape constitutes a good approximation of the element geometry. The 3D analysis delivered further insights into the relationship between the geometry of the elements and the constraints related to occlusion. The 2D analysis allowed a quantitative assessment of the variation among species and through time. Allometry and bilateral asymmetry were differently expressed depending on the species considered, suggesting that constraints imposed on pairing by the morphology of the elements varied even among related species. The within‐species variation was so important that it largely obliterated temporal trends; a relationship of Polygnathus shape and conodont biofacies variations through the Famennian nevertheless suggested an evolution driven by ecological interactions between conodont genera.  相似文献   

18.
19.
The present study reports a case where the survey of morphological and mitochondrial DNA variation among populations of a species complex of leaf beetle, the Gonioctena variabilis complex, has lead to the identification of a hybrid zone between two species of the complex in Southern Spain. The complex is divided into four species distributed around the western Mediterranean region. The four species, G. variabilis, Gonioctena aegrota, Gonioctena gobanzi, and Gonioctena pseudogobanzi, are traditionally determined by differences in the morphology of the male genitalia (aedeagus). To gain insight into the history of the speciation process within this species complex, we sampled populations in Portugal, Spain, Southern France, and Northern Italy. We sequenced a portion of the mitochondrial control region of each individual collected. A haplotype network of these sequences was found to comprise four distinct groups of sequence types, separated by a relatively large number of mutations. Moreover, in most of the samples for which morphological and molecular variation is available, there is a one‐to‐one correspondence between haplotype group, defined by mitochondrial sequence variation, and morphological groups defined on the basis of the aedeagus, showing evidence of four historically independent evolutionary units. This supports the use of the aedeagus morphology as a taxonomically informative trait in this species complex and a recent taxonomic revision upgrading four formerly subspecies, corresponding to the evolutionary units identified in the present study, to species status. However, some of the individuals from our samples in Southern Spain, morphologically identified as G. aegrota, were found to possess mitochondrial sequences typical of G. pseudogobanzi. The opposite case was also found. This suggests the presence of a zone of contact and hybridization between G. aegrota and G. pseudogobanzi. The location of this hybrid zone appears to be unusual. We identify historical scenarios that may explain our observations. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 105–114.  相似文献   

20.
The human face is a heritable surface with many complex sensory organs. In recent years, many genetic loci associated with facial features have been reported in different populations, yet there is a lack of studies on the Han Chinese population. Here, we report a genome-wide association study of 3 D normal human faces of 2,659 Han Chinese with autosegment phenotypes of facial morphology. We identify singlenucleotide polymorphisms(SNPs) encompassing four genomic regions showing significant associations with different facial regions, including SNPs in DENND1 B associated with the chin, SNPs among PISRT1 associated with eyes, SNPs between DCHS2 and SFRP2 associated with the nose, and SNPs in VPS13 B associated with the nose. We replicate 24 SNPs from previously reported genetic loci in different populations, whose candidate genes are DCHS2, SUPT3 H, HOXD1, SOX9, PAX3, and EDAR. These results provide a more comprehensive understanding of the genetic basis of variation in human facial morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号