首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parasites present a threat for free‐living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade‐offs between immune function and life‐history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade‐offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.  相似文献   

2.
Natural selection on immune responsiveness in blue tits Parus caeruleus   总被引:2,自引:0,他引:2  
Abstract.— What is the form of natural selection on immune responsiveness? For a population at evolutionary equilibrium, there are two different scenarios. First, it is generally assumed that immune defense has both benefits and costs. If variation in immune responsiveness is due to variation in how individuals trade off these costs and benefits, one would expect immune responsiveness to be subject to stabilizing selection. Second, it is well known that an individual's immune responsiveness is often dependent on its overall condition. If immune responsiveness is condition‐dependent, one would expect immune responsiveness to be under positive directional selection. We would therefore expect that the form of natural selection on immune responsiveness depends on the relative magnitude of these two sources of variation: variation in how individuals trade off the costs and benefits of defense, and variation in condition. We measured primary and secondary antibody responsiveness to diphtheria‐tetanus vaccine in blue tits during winter and investigated the relationship between responsiveness and survival to the following breeding season. We use responsiveness to these antigens as measures of an individual's ability or propensity to mount an antibody response in case of an infection. Interestingly, different measures of responsiveness were subject to different selective regimes: primary responsiveness to diphtheria was subject to stabilizing selection, whereas secondary responsiveness to tetanus was subject to positive directional selection. In contrast, there was no significant selection on primary responsiveness to tetanus or secondary responsiveness to diphtheria. The finding of stabilizing selection on a measure of responsiveness is evidence that immune defense can incur fitness costs; a central but little‐tested assumption of theories of the ecology and evolution of immunological defense. The finding of directional selection on a measure of responsiveness is consistent with the idea that immune responsiveness is condition‐dependent, although we cannot rule out the alternative explanation that the population is not at evolutionary equilibrium with respect to this trait.  相似文献   

3.
Genetics, physiology, and behavior are all expected to influence the susceptibility of hosts to parasites. Furthermore, interactions between genetic and other factors are suggested to contribute to the maintenance of genetic polymorphism in resistance when the relative susceptibility of host genotypes is context dependent. We used a maternal sibship design and long- and short-term food deprivation treatments to test the role of family-level genetic variation, body condition, physiological state, and foraging behavior on the susceptibility of Lymnaea stagnalis snails to infection by a trematode parasite that uses chemical cues to locate its hosts. In experimental exposures, we found that snails in the long-term food deprivation treatment contracted fewer parasites than snails that were continuously well-fed, possibly because well-fed snails grew larger and attracted more transmission stages. When we kept the long-term feeding rates the same, but manipulated the physiological state and foraging behavior of the snails with short-term food deprivation treatment, we found that snails that were fed before the exposure contracted more parasites than snails that were fed during the exposure. This suggests that direct physiological effects of food processing, but not foraging behavior, predisposed snails to infection. Feeding treatments also affected the family-level variation in snail susceptibility, suggesting that the relative susceptibility of host genotypes was context dependent.  相似文献   

4.
5.
We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.  相似文献   

6.
Constraints on an induced defense: the role of leaf area   总被引:4,自引:0,他引:4  
Folivory results in both leaf damage and the loss of photosynthetic capacity. Leaf damage activates the production of induced defenses, but diminished photosynthetic capacity resulting from lost leaf area may impair a plant's ability to respond defensively. Because damage-induced nicotine production in Nicotiana sylvestris (Solanaceae) is an energy-demanding, active process, we predicted that the loss of leaf area would constrain this plant's ability to produce an induced nicotine pool. We examined our prediction in an experiment which combined leaf puncture and removal protocols, quantified induced nicotine pools on a whole-plant basis, and accounted for losses in the nicotine pool due to removed leaves and lost growth potential. In contrast to our prediction, leaf removal did little to diminish the growth-corrected estimates of the induced nicotine pool in plants with sufficient damage cue; only when plants had lost 88% or more of their leaf area did the induced nicotine pool decline significantly. These results demonstrate that the induced defense is relatively insensitive to current photosynthetic capacity. In contrast to the size of the induced nicotine pool, the concentration of nicotine in the remaining shoot tissues continued to rise as puncture damage increased over all defoliation levels tested. The mechanisms responsible for inducible nicotine production may have evolved as a means of providing shoot tissues with protection that is proportional to the amount of damage incurred while keeping production costs constant for the remaining plant parts.  相似文献   

7.
Plants can defend themselves against the damaging effects of herbivory in at least two ways. Resistant plants avoid or deter herbivores and are therefore fed upon less than susceptible plants. Tolerant plants are not eaten less than plants with little tolerance, but the effects of herbivore damage are not so detrimental to a tolerant plant as they are to a less tolerant plant. Biologists have suggested that these two strategies might represent two alternative and redundant defenses against herbivory since they appear to serve the same function for plants. I explore the relationship between resistance and tolerance, particularly with regards to how the joint evolution of these two traits will influence the evolution of plant defense. Although I briefly review some of the contributions of theory to the study of tolerance, I concentrate on an empirical, ecological genetic approach to the study of the evolution of these characters and the coevolution of tolerance and herbivores. In order to understand the evolution of any trait, we must understand the evolutionary forces acting on the trait. Specifically, we must understand how natural selection acts on tolerance. I review several studies that have specifically measured the form of selection acting on tolerance and tested the hypothesis that resistance and tolerance are alternative strategies. I also present a statistical analysis that does not support the hypothesis that herbivores are selective agents on tolerance. Finally, I consider a variety of constraints that possibly restrict the evolution of tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Assessing frequency-dependent seed size selection: a field experiment   总被引:3,自引:0,他引:3  
Seed size is a life history attribute that affects the probability of seed predation, and therefore affects plant fitness. Compared with smaller seeds, those with large size should be more attractive to predators, as they constitute a more profitable food item because of higher energetic and/or nutrient content. However, predator preferences may be frequency-dependent in the sense that they may be modulated by the relative abundance of alternative seeds of different sizes. We set up a field experiment to evaluate frequency-dependent seed predation using seeds of Cryptocarya alba (Lauraceae), at La Campana National Park in central Chile. Predators (rodents and birds) preferentially consumed large seeds in an antiapostatic manner. These selective responses were maintained throughout the experiment and seed selection by predators was not affected by previous seed consumption. Our results suggest that (a) large seeds are very profitable food items actively sought by seed predators even at low relative abundance, (b) seed selection is expressed in a short time scale and (c) seed predators, by consuming large seeds consistently, have the potential to modify significantly the quality of plant progeny.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 307–312.  相似文献   

9.
Resistance and tolerance are considered to be different plant strategies against disease. While resistance traits prevent hosts becoming parasitized or reduce the extent of parasitism, tolerance traits reduce the fitness-impact of parasitism on infected hosts. Theoretical considerations predict that in some circumstances mutual redundancy will give hosts with either high resistance or high tolerance a fitness advantage over hosts that exhibit both of these traits together. However, empirical evidence has provided mixed results. In this paper, I describe the pattern of phenotypic selection imposed by the holoparasitic mistletoe Tristerix aphyllus upon resistance (spine length) and tolerance (branching) traits in the cactus Echinopsis chilensis. Results indicate that branching was an efficient compensatory mechanism, reducing 75.5% of the fitness-impact attributable to parasitism. Even though both traits showed a negative correlation, as expected from the presence of allocation costs between strategies, no correlational selection coefficient was significant indicating that selection did not favor alternative combinations of traits. Consequently, I did not find evidence for selection promoting mutually exclusive defense strategies against the mistletoe, which suggests that tolerance and resistance traits may coexist stably in populations of E. chilensis.  相似文献   

10.
* Plant defense traits often show high levels of genetic variation, despite clear impacts on plant fitness. This variation may be partly maintained by trade-offs in the defense against multiple herbivore species, for example between generalists and coevolved specialists. Despite a long-standing discussion in the literature on the subject, no study to date has specifically manipulated specialist and generalist herbivores independently of one another to determine whether the two guilds exert opposing selection pressures on specific defensive traits. * In two separate experiments, the dominant specialist and generalist herbivores of Brassica nigra were independently manipulated to test whether the composition of the herbivore community altered the direction of selection on a major defensive trait of the plant, sinigrin concentration. * It was found that generalist damage was negatively correlated but specialist loads were positively correlated with increasing sinigrin concentrations; and sinigrin concentration was favored when specialists were removed, disfavored (past an intermediate point) when generalists were removed and selectively neutral when plants faced both generalists and specialists.  相似文献   

11.
Evolutionary ecologists have long been interested by the link between different immune defenses and fitness. Given the importance of a proper immune defense for survival, it is important to understand how its numerous components are affected by environmental heterogeneity. Previous studies targeting this question have rarely considered more than two immune markers. In this study, we measured seven immune markers (response to phytohemagglutinin (PHA), hemolysis capacity, hemagglutination capacity, plasma bactericidal capacity, percentage of lymphocytes, percentage of heterophils, and percentage of eosinophils) in tree swallow (Tachycineta bicolor) nestlings raised in two types of agro‐ecosystems of contrasted quality and over 2 years. First, we assessed the effect of environmental heterogeneity (spatial and temporal) on the strength and direction of correlations between immune measures. Second, we investigated the effect of an immune score integrating information from several immune markers on individual performance (including growth, mass at fledging and parasite burden). Both a multivariate and a pair‐wise approach showed variation in relationships between immune measures across years and habitats. We also found a weak association between the integrated score of nestling immune function and individual performance, but only under certain environmental conditions. We conclude that the ecological context can strongly affect the interpretation of immune defenses in the wild. Given that spatiotemporal variations are likely to affect individual immune defenses, great caution should be used when generalizing conclusions to other study systems.  相似文献   

12.
Parasites are ubiquitous and have well-documented ecological consequences. In contrast, the extent to which parasites drive phenotypic evolution in hosts remains obscure. We use a recently developed statistical technique--selective source analysis--to analyse the strength of phenotypic selection acting on floral traits in the plant Heuchera grossulariifolia attributable to attack by the seed-parasitic moth, Greya politella. This analysis spanned 3 years and included two sympatric populations of the host plant H. grossulariifolia that differ in ploidy. Our analyses revealed that attack by G. politella contributed to phenotypic selection for flowering time and floral display size, favouring earlier flowering in the polyploid population, later flowering in the diploid population and increased floral display size in the polyploid population. Although selection imposed by parasite attack was generally quite weak, in one of the 3 years parasites generated a modestly strong selection gradient (beta = -0.059) that explained 38.6% of total observed phenotypic selection for earlier flowering in the polyploid population. Together, our results demonstrate parasites can generate significant phenotypic selection, but that such selection may be sporadic across populations and time.  相似文献   

13.
肺表面活性物质相关蛋白A与肺部免疫防御研究进展   总被引:1,自引:0,他引:1  
肺表面活性物质相关蛋白A(SP—A)是一种高度保守的亲水性糖蛋白,属于C-型凝素家族成员,相对分子质量为29~36kDa。SP—A是肺部重要的天然免疫防御分子,在肺的局部防御和天然免疫反应中起着十分重要的作用。它不仅可调节局部免疫和炎症反应、调理吞噬作用,还可凝集病原微生物、影响趋化作用及促进杀菌作用等。  相似文献   

14.
15.
Although crucial for the understanding of adaptive evolution, genetically resolved examples of local adaptation are rare. To maximize survival and reproduction in their local environment, hosts should resist their local parasites and pathogens. The major histocompatibility complex (MHC) with its key function in parasite resistance represents an ideal candidate to investigate parasite-mediated local adaptation. Using replicated field mesocosms, stocked with second-generation lab-bred three-spined stickleback hybrids of a lake and a river population, we show local adaptation of MHC genotypes to population-specific parasites, independently of the genetic background. Increased allele divergence of lake MHC genotypes allows lake fish to fight the broad range of lake parasites, whereas more specific river genotypes confer selective advantages against the less diverse river parasites. Hybrids with local MHC genotype gained more body weight and thus higher fitness than those with foreign MHC in either habitat, suggesting the evolutionary significance of locally adapted MHC genotypes.  相似文献   

16.
The cost of an immune response: vaccination reduces parental effort   总被引:6,自引:0,他引:6  
A fundamental assumption of theories of the ecology and evolution of inducible defences is that protective responses to attacks by parasites or predators should not only have benefits, but also costs. The vertebrate immune system is by far the best studied example of an inducible defence, yet little is known about the costs of an immune response, especially in natural populations. To test if an immune response per se is costly, we induced an antibody response in female blue tits, Parus caeruleus , by immunising them with human diphtheria–tetanus vaccine, and compared their nestling-feeding rate with that of saline-injected controls. We found that vaccinated females reduced their nestling feeding rate, thus demonstrating a cost of the immune response in the currency of parental effort.  相似文献   

17.
Kelly  Clint D. 《Behavioral ecology》2008,19(1):184-192
In many animal species, males do not seek females directly butinstead locate and defend sites that contain spatially or temporallylimited resources essential to female survival and reproduction.Resident males that successfully repel conspecific rivals canmate with females attracted to these resources. In theory, increasingresource value increases harem size and thus increases the opportunity(Imates) for and strength of sexual selection on traits crucialto male resource-holding potential and mating success. I experimentallytested this hypothesis in the field using the Wellington treeweta, Hemideina crassidens (Orthoptera: Tettigonioidea: Anostostomatidae),a sexually dimorphic insect in which males use their enlargedmandibles as weapons in male–male contests over accessto females sheltering in tree cavities (galleries). By manipulatinggallery size, I showed that, compared with smaller galleries,larger galleries housed larger harems. Variation in gallerysize was an important determinant of Imates, but contrary toexpectation, greater opportunity existed in small galleriescompared with large galleries. As predicted, male weapon sizewas under stronger directional selection in large galleriesbecause the fitness benefits were greater under these conditionscompared with small galleries. My results help explain the positiveassociation between average weapon size and average gallerysize observed within and among tree weta populations in NewZealand.  相似文献   

18.
Several insect species show an increase in cuticular melanism in response to high densities. In some species, there is evidence that this melanism is correlated with an up-regulation of certain immune system components, particularly phenoloxidase (PO) activity, and with the down-regulation of lysozyme activity, suggesting a trade-off between the two traits. As melanism has a genetic component, we selected both melanic and nonmelanic lines of the phase-polyphenic lepidopteran, Spodoptera littoralis, in order to test for a causative genetic link between melanism, PO activity and lysozyme activity, and to establish if there are any life-history costs associated with the melanic response. We found that, in fact, melanic lines had lower PO activity and higher lysozyme activity than nonmelanic lines, confirming a genetic trade-off between the two immune responses, but also indicating a genetic trade-off between melanism and PO activity. In addition, we found that lines with high PO activity had slower development rates suggesting that investment in PO, rather than in melanism, is costly.  相似文献   

19.
Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe‐ versus immune‐mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild‐caught flour beetle populations (Tribolium spp.) during acute infection with the virulent bacteria Bacillus thuringiensis (Bt) and Photorhabdus luminescens (P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density‐dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density‐independent AMP expression were more likely to survive P. luminescens infection. Reduction in pathway signalling efficiency through RNAi‐mediated knockdown of the imd gene reduced the magnitude of both microbe‐independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host‐microbe dynamics to immune system evolution.  相似文献   

20.
Although disease-resistance polymorphisms are common in natural plant populations, the mechanisms responsible for this variation are not well understood. Theoretical models predict that balancing selection can maintain polymorphism within a population if the fitness effects of a resistance allele vary from a net cost to a net benefit, depending upon the extent of pathogen damage. However, there have been a few attempts to determine how commonly this mechanism operates in natural plant-pathogen interactions. Ipomoea purpurea populations are often polymorphic for resistance and susceptibility alleles at a locus that influences resistance to the fungal pathogen, Coleosporium ipomoeae. We measured the fitness effects of resistance over three consecutive years at natural and manipulated levels of damage to characterize the type of selection acting on this locus. Costs of resistance varied in magnitude from undetectable to 15.5%, whereas benefits of resistance sometimes equaled, but never exceeded, these costs. In the absence of net benefits of resistance at natural or elevated levels of disease, we conclude that selection within individual populations of I. purpurea probably does not account completely for maintenance of this polymorphism. Rather, the persistence of this polymorphism is probably best explained by a combination of variable selection and meta-population processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号