首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Antibody against the intermediate-sized filaments from gizzard smooth muscle was used to determine the presence or absence of reacting 10-nm filaments in different cell types. The antibody against gizzard 10-nm filaments reacted with filaments in cultured smooth muscle cells, skeletal myotubes and postmitotic skeletal myoblasts. It did not bind to the 10-nm filaments present in replicating presumptive myoblasts and fibroblasts, or the 10-nm filaments in spinal ganglion cells.  相似文献   

2.
The phorbol ester TPA induces the sequential disassembly of myofibrils. First the alpha-actin thin filaments are disrupted and then, hours later, the myosin heavy chain (MHC) thick filaments. TPA does not induce the disassembly of the beta- and gamma-actin thin filaments of stress fibers in presumptive myoblasts or fibroblasts, nor does it block the reemergence of stress fibers in 72-h myosacs that have been depleted of all myofibrillar molecules. There are differences in where, when, and how myofibrillar alpha-actin and MHC are degraded and eliminated from TPA-myosacs. Though the anisodiametric myotubes have begun to retract into isodiametric myosacs after 5 h in TPA, staining with anti-MHC reveals normal tandem A bands. In contrast, staining with mAb to muscle actin fails to reveal tandem I bands. Instead, both mAb to muscle actin and rhophalloidin brilliantly stain numerous disk-like bodies approximately 3.0 micron in diameter. These muscle actin bodies do not fuse with one another, nor do they costain with anti-MHC. All muscle actin bodies and/or molecules disappear in 36-h myosacs. The collapse of A bands is first initiated in 10-h myosacs. Their loss correlates with the appearance of immense, amorphous MHC patches. MHC patches range from a few micrometers to over 60 micron in size. They do not costain with antimuscle actin or rho-phalloidin. While diminishing in number and fluorescence intensity, MHC aggregates are present in 30% of the 72-h myosacs. Myosacs removed from TPA rapidly elongate, and after 48 h display normal newly assembled myofibrils. TPA reversibly blocks incorporation of [35S]methionine into myofibrillar alpha-actin, MHC, myosin light chains 1 and 2, the tropomyosins, and troponin C. It does not block the synthesis of beta- or gamma-actins, the nonmyofibrillar MHC or light chains, tubulin, vimentin, desmin, or most household molecules.  相似文献   

3.
The turnover of myosin and actin in both muscle and non-muscle cells in culture was investigated. By the double-label criterion, myosin and actin were coordinately synthesized and degraded in replicating, mononucleated fibroblasts, chondrocytes, BUdR-suppressed myogenic cells, and in post-mitotic, multinucleated myotubes. Myosin and actin were among the most stable proteins in each cell type. In single label ‘pulse-chase’ experiments, the half-lives of myosin and actin in all replicating, mononucleated cells were 2.5–3 days; in myotubes, however, they were approx. 6 days. Myosin and actin labelled in replicating presumptive myoblasts and chased until the cells ceased replicating and fused into multinucleated myotubes retained the degradation rate of 3 days; this differed from Jhe rate of 6 days shown for myosin and actin newly-synthesized in post-mitotic myotubes. The type of myosin synthesized in the mother presumptive myoblast, then, is transmitted to the postmitotic daughters. This myosin, however, is more rapidly degraded than the definitive myosin that is synthesized in the myotube.  相似文献   

4.
Actin and myosin in a variety of myogenic and non-myogenic cells   总被引:7,自引:0,他引:7  
Replicating presumptive myoblasts and bromodeoxyuridine-suppressed myogenic cells, as well as embryonic fibroblasts and chondroblasts, synthesize actin and myosin. The ratio of myosin to actin and the number of myosin light chains synthesized in these cells differ from those in multinucleated myotubes. These findings are discussed in relationship to myogenesis.  相似文献   

5.
Abstract We identified a novel neural cell adhesion molecule (NCAM)-associated protein, myo genesis-related and N CAM- a ssociated p rotein (MYONAP), the expression of which increases during the formation of myotubes in quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells). MYONAP shares homology with PL48 in human cytotrophoblasts and KIAA0386 in human brain. Excess expression of MYONAP in presumptive QM-RSV myoblasts induced long protrusions like neurites in cooperation with microtubules. Suppression of MYONAP by antisense cDNA prevented myotubes from forming in spite of the expression of myogenin, creatine kinase, and myosin, and rendered myoblast membranes resistant to fusion. Yeast two-hybrid screening showed that MYONAP interacted with NCAM specifically. Deletion of the NCAM-associated domain resulted in a loss of the function that induces neurite-like protrusions to form and disturbed the elongation of microtubules. The results suggested that MYONAP influenced the functions of microtubules and was involved in the formation of myotubes via its interaction with NCAM.  相似文献   

6.
The Localization of Skeletal Light Meromyosin in Cells of Myogenic Cultures   总被引:7,自引:0,他引:7  
Fluorescent antibodies against skeletal light meromyosin were used to study the localization of this muscle-specific antigen in myotubes, myoblasts, presumptive myoblasts and fibroblasts found in six-day myogenic cultures. The labelled antibody bound only to the lateral edges of the A-bands in myofibrils. The antibody did not bind to antigens in the nucleus, cytoplasm or in the microfilaments beneath the plasmalemma in any of the cell types examined. Similarly, the external face of the cell surface of unfixed, living myotubes and mononucleated cells did not bind the antibody. Immunodiffusion tests confirm these results: high salt extracts of myotube-containing cultures reacted against anti-skeletal light meromyosin, whereas extracts of fibroblasts and presumptive myoblast cultures failed to precipitate the antibody. It is proposed that if myosin is present in the plasmalemma of these cells, as is suggested by the work of others, it is immunologically distinct from that present in the myofibrils of definitive muscle.  相似文献   

7.
Cytochalasin B (CB) induces a biphasic retraction is some cell types. The rapid response that peaks in 30 min leads to the "dendritic" condition. Replicating myogenic and fibrogenic cells, as well as postmitotic myoblasts and myotubes, participate in this reaction. This is followed by a slower phase that requires 40 h for stabilization and leads to the fully "absorized" state. Only replicating myogenic and fibrogenic cells participate in this reaction. Postmitotic myoblasts and myotubes do not arborize but round up and float off into the medium. Pretreatment with Colcemid does not block the rapid response to CB, but does block arborization. CB-arborized cells exposed to Colcemid while in the presence of CB develop sufficient tension to pull themselves apart. If CB depolymerizes actin-like filaments, and if such filaments constitute the only contractile system in the cell, then it is difficult to visualize how cells in CB develop such tension. Colcemid induces twisting, birefringent bands in interphase- and metaphase-arrested myogenic and fibrogenic cells, and in postmitotic myotubes. Such bands are more evident when CB-arborized cells are removed from CB and allowed to relax in Colcemid. These birefringent bands assemble in the prescence of cycloheximide, and may constitute 20% of the volume of the cell.  相似文献   

8.
Skeletal myoblasts from fetal muscle respond adversely to fibronectin and laminin substrata: when primary mouse skeletal myoblasts are plated onto laminin, more myosin and desmin-positive myoblasts (myo+ cells) develop than on plates coated with fibronectin or collagen. In clonal cultures virtually all cells differentiate into postmitotic, fusion-capable myo + myoblasts on laminin after 3 days. In contrast, on fibronectin, the majority of the cells becomes myosin- and desmin-negative, partially due to proliferation of undifferentiated myoblast precursor cells, partially due to dedifferentiation or modulation of myoblasts into fibroblast-like myo- cells. Loss of the myogenic phenotype on fibronectin was also observed in cloned mouse myoblasts and in cultures of a differentiating mouse satellite cell line, MM14Dy, confirming that the appearance of desmin-negative cells is a result of myoblast modulation and not due simply to overgrowth by muscle fibroblasts. In the light of other effects of laminin on myoblasts, such as the stimulation of migration, differentiation and proliferation, our findings are consistent with the notion that laminin and fibronectin may be counteracting factors in the control of muscle differentiation.  相似文献   

9.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

10.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

11.
Addition of cationized ferritin to Triton X-100 extracted fibroblasts enhances manyfold the visibility of actin filaments, intermediate filaments and microtubules. Cationized ferritin also increases the phase image of actin filaments in skeletal muscle myofibrils from which myosin has been removed, and the phase contrast of Z-bands after extracting both myosin and actin from myofibrils. It is suggested to employ this non-specific reagent as a rapid technique for the visualization of cytoskeletal elements in cells.  相似文献   

12.
Mitosis and intermediate-sized filaments in developing skeletal muscle   总被引:81,自引:54,他引:27       下载免费PDF全文
A new class of filaments intermediate in diameter between actin and myosin filaments has been demonstrated in skeletal muscle cells cultured from chick embryos. These filaments, which account for the majority of free filaments, average 100 A in diameter. They may run for more than 2 µ in a single section and can be distinguished in size and appearance from the thick and thin filaments assembled into myofibrils. The 100-A filaments are seen scattered throughout the sarcoplasm at all stages of development and show no obvious association with the myofibrils. The 100-A filaments are particularly conspicuous in myotubes fragmented by the mitotic inhibitors, colchicine and Colcemid. In addition, filaments similar in size and appearance to those found in myotubes are present in fibroblasts, chondrocytes, and proliferating mononucleated myoblasts. The 100-A filaments are present in cells arrested in metaphase by mitotic inhibitors. Definitive thick (about 150 A) or thin (about 60 A) myofilaments are not found in skeletal myogenic cells arrested in metaphase. Myogenic cells arrested in metaphase do not bind fluorescein-labeled antibody directed against myosin or actin. For these reasons, it is concluded that not all "thin" filaments in myogenic cells are uniquely associated with myogenesis.  相似文献   

13.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

14.
During differentiation, many cells reorganize their microtubule cytoskeleton into noncentrosomal arrays. Although these microtubules are likely organized to meet the physiological roles of their tissues, their functions in most cell types remain unexplored. In the epidermis, differentiation induces the reorganization of microtubules to cell–cell junctions in a desmosome-dependent manner. Here, we recapitulate the reorganization of microtubules in cultured epidermal cells. Using this reorganization assay, we show that cortical microtubules recruit myosin II to the cell cortex in order to engage adherens junctions, resulting in an increase in mechanical integrity of the cell sheets. Cortical microtubules and engaged adherens junctions, in turn, increase tight junction function. In vivo, disruption of microtubules or loss of myosin IIA and B resulted in loss of tight junction–mediated barrier activity. We propose that noncentrosomal microtubules act through myosin II recruitment to potentiate cell adhesion in the differentiating epidermis, thus forming a robust mechanical and chemical barrier against the external environment.  相似文献   

15.
We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end-on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles.  相似文献   

16.
Myosin-Va was identified as a microtubule binding protein by cosedimentation analysis in the presence of microtubules. Native myosin-Va purified from chick brain, as well as the expressed globular tail domain of this myosin, but not head domain bound to microtubule-associated protein-free microtubules. Binding of myosin-Va to microtubules was saturable and of moderately high affinity (approximately 1:24 Myosin-Va:tubulin; Kd = 70 nM). Myosin-Va may bind to microtubules via its tail domain because microtubule-bound myosin-Va retained the ability to bind actin filaments resulting in the formation of cross-linked gels of microtubules and actin, as assessed by fluorescence and electron microscopy. In low Ca2+, ATP addition induced dissolution of these gels, but not release of myosin-Va from MTs. However, in 10 microM Ca2+, ATP addition resulted in the contraction of the gels into aster-like arrays. These results demonstrate that myosin-Va is a microtubule binding protein that cross-links and mechanochemically couples microtubules to actin filaments.  相似文献   

17.
In order to evaluate the effects of specific mutations on sarcomere assembly and function in vivo, we describe the course of normal development of Drosophila indirect flight muscle (IFM) in staged pupae using electron microscopy. We find that no contractile assemblies remain in larval muscle remnants invaded by imaginal myoblasts, establishing that myofibrils in IFM assemble de novo. Stress-fiber-like structures or other template structures are not prominent before or during sarcomere assembly. By 42 hr pupation (eclosion 112 hr), thick and thin filaments have appeared simultaneously in slender, interdigitated arrays between regularly spaced Z-bodies. Each tiny, uniformly striated myofibril forms within a "sleeve" of microtubules, and both microtubules and myofibrils are attached to the cell membrane at each end of the fiber from the initial stages of assembly. Later in pupation, the microtubule "sleeves" disassemble. Sarcomere number appears to remain constant. We saw no evidence that terminal sarcomeres are sites for addition of new sarcomeres or that Z-lines split transversely, producing new, very short sarcomeres. Rather, initial thick and thin filaments and sarcomeres are much shorter than adult length. Sarcomere length increases smoothly and coordinately from 1.7 to 3.2 μm, reflecting increase in filament lengths and indicating that myosin and actin molecules must be incorporated into filaments after sarcomere formation. Myofilaments are not seen scattered in the cytoplasm at any time, nor do we detect filaments that could be in the process of being "trolleyed" along myofibrils into positions of lateral register. Myofibril diameter increases uniformly from 4-thick filaments to 36-thick filaments across, by peripheral addition of myofilaments. At each successive stage, all sarcomeres in a fiber attained similar length and diameter. Initial thick filaments are solid but within several hours these and all subsequently assembled thick filaments appear hollow. Initial Z-bodies do not show any internal lattice and are more irregularly shaped than adult Z-discs.  相似文献   

18.
Pizon V  Gerbal F  Diaz CC  Karsenti E 《The EMBO journal》2005,24(21):3781-3792
It has been proposed that microtubules (MTs) participate in skeletal muscle cell differentiation. However, it is still unclear how this happens. To examine whether MTs could participate directly in the organization of thick and thin filaments into sarcomeres, we observed the concomitant reorganization and dynamics of MTs with the behavior of sarcomeric actin and myosin by time-lapse confocal microscopy. Using green fluorescent protein (GFP)-EB1 protein to label MT plus ends, we determined that MTs become organized into antiparallel arrays along fusing myotubes. Their dynamics and orientation was found to be different across the thickness of the myotubes. We observed fast movements of Dsred-myosin along GFP-MTs. Comparison of GFP-EB1 and Dsred-myosin dynamics revealed that myosin moved toward MT plus ends. Immuno-electron microscopy experiments confirmed that myosin was actually associated with MTs in myotubes. Finally, we confirmed that MTs were required for the stabilization of myosin-containing elements prior to incorporation into mature sarcomeres. Collectively, our results strongly suggest that MTs become organized into a scaffold that provides directional cues for the positioning and organization of myosin filaments during sarcomere formation.  相似文献   

19.
When day 1 cultures of chick myogenic cells were exposed to the mutagenic alkylating agent ethyl methanesulfonate (EMS) for 3 d, 80% of the replicating cells were killed, but postmitotic myoblasts survived. The myoblasts fused to form unusual multinucleated "myosheets": extraordinarily wide, flattened structures that were devoid of myofibrils but displayed extensive, submembranous stress fiber-like structures (SFLS). Immunoblots of the myosheets indicated that the carcinogen blocked the synthesis and accumulation of the myofibrillar myosin isoforms but not that of the cytoplasmic myosin isoform. When removed from EMS, widely spaced nascent myofibrils gradually emerged in the myosheets after 3 d. Striking co-localization of fluorescent reagents that stained SFLS and those that specifically stained myofibrils was observed for the next 2 d. By both immunofluorescence and electron microscopy, individual nascent myofibrils appeared to be part of, or juxtaposed to, preexisting individual SFLS. By day 6, all SFLS had disappeared, and the definitive myofibrils were displaced from their submembranous site into the interior of the myosheet. Immunoblots from recovering myosheets demonstrated a temporal correlation between the appearance of the myofibrillar myosin isoforms and the assembly of thick filaments. The assembly of definitive myofibrils did not appear to involve desmin intermediate filaments, but a striking aggregation of sarcoplasmic reticulum elements was seen at the level of each I-Z-band. Our findings suggest that SFLS in the EMS myosheets function as early, transitory assembly sites for nascent myofibrils.  相似文献   

20.
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5- bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号