首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosecond time-resolved absorption spectra have been measured throughout the photocycle of bacteriorhodopsin in both light-adapted and dark-adapted purple membrane (PM). The data from dark-adapted samples are interpretable as the superposition of two photocycles arising independently from the all-trans and 13-cis retinal isomers that coexist in the dark-adapted state. The presence of a photocycle in dark-adapted PM which is indistinguishable from that observed for light-adapted PM under the same experimental conditions is demonstrated by the observation of the same five relaxation rates associated with essentially identical changes in the photoproduct spectra. This cycle is attributed to the all-trans component. The cycle of the 13-cis component is revealed by scaling the data measured for the light-adapted sample and subtracting it from the data on the dark-adapted mixture. At times less than 1 ms, the resulting difference spectra are nearly time-independent. The peak of the difference spectrum is near 600 nm, although there appears to be a slight (approximately 2 nm) blue-shift in the first few microseconds. Subsequently the amplitude of this spectrum decays and the peak of the difference spectrum shifts in two relaxations. Most of the amplitude of the photoproduct difference spectrum (approximately 80%) decays in a single relaxation having a time constant of approximately 35 ms. The difference spectrum remaining after this relaxation peaks at approximately 590 nm and is indistinguishable from the classical light-dark difference spectrum, which we find, in experiments performed on a much longer time scale, to peak at 588 nm. The decay of this remaining photo-product is not resolvable in the nanosecond kinetic experiments, but dark adaptation of a completely light-adapted sample is found to occur exponentially with a relaxation time of approximately 2,000 s under the conditions of our experiments.  相似文献   

2.
Our previous work suggests that cone photoreceptor inner segment (CIS) mitochondria demand and produce more ATP than rods. The CISs utilize two complimentary strategies to increase ATP production: increase the absolute number of mitochondria and their cristae surface membrane area. In this treatise, we ask: How are crista junctions formed and regulated? Once formed, are there physical mechanisms that constrain their diameter? How are the constrictions in cristae regulated and is this key for cytochrome c release during apoptosis? What are their differences in rod and cone susceptibility to apoptotic cell death during calcium overload and oxidative stress?  相似文献   

3.
Summary The photoreceptor layer in the retina of Haplochromis burtoni (Cichlidae, Teleostei) was studied by scanning electron microscopy. Three types of receptors were identified: rods, single-cones and double-cones. The three-dimensional arrangement of these photoreceptors is described in the light- and dark-adapted retina. The surface of the inner segment of the photoreceptor cells displays fine vertical fissures which give rise to slender processes. These so called calycal processes which are of different lengths in rods and cones, surround the beginning of the smooth-surfaced outer segment. The myoid, the contractile part of the receptor, which is located beneath the ellipsoid, was examined in the single-cones of the dark-adapted retina. It is a slender structure with surface infoldings. The myoid, studied by transmission electron microscopy, contains bundles of parallel myofilaments, which are thought to be contractile.This investigation was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 51-E/10)  相似文献   

4.
Membranes from the buds of Pisum sativum L. contain a protein kinase which is activated 5- to 15-fold by micromolar levels of calcium. Best calcium activations were found with light-membrane fractions, and on density gradients these band at a similar position to the plasma membrane. Other heavier membranes, however, also contain a calcium-dependent protein kinase. The activity of the calcium-dependent protein kinase is inhibited by added phospholipids and phospholipase, in contrast to protein-kinase C. Calcium-dependent protein-kinase activity can be inhibited by 40% by low concentrations of the calmodulin inhibitor, trifluoperazine, but inhibitions are detected only after prior incubation of the membranes for some hours in ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid. Substantial calcium-dependent protein-kinase activity remains uninhibited by trifluoperazine indicating that there may be calmodulin-dependent and calmodulin-independent, but calcium-activated, protein kinases in pea membranes. The calcium-activated protein kinase seems to be intrinsically bound to membranes and only slight or partial solubilisation is obtained by the detergents nonidet P-40, (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate or octyl glucose. Better solubilisation is obtained by acetone treatment. There is some retention of calcium activation after partial solubilisation. A calcium-independent protein kinase has also been detected in membrane preparations; it has a substrate specificity different from that the calcium-dependent enzyme. Our results indicate, therefore, that there may be at least three protein kinases attached to pea shoot membranes.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - TFP trifluoperazine  相似文献   

5.
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions.  相似文献   

6.
In inside-out red cell membrane vesicles ATP-dependent calcium transport is activated by the divalent metal ions Mg2+, Mn2+, Co2+, Ni2+ and Fe2+. This activation is based on the formation of Me2+-ATP complexes which can serve as energy-donor substrates for the calcium pump, and probably, satisfy the requirement for free Me2+ in this transport process. Higher Me2+ concentrations inhibit calcium transport with various efficiencies. Mn2+ directly competes with Ca2+ at the transport site, while other divalent metal ions investigated have no such effect. The formation of the hydroxylamine-sensitive phosphorylated intermediate (EP) of the red cell membrane calcium pump from [γ-32P]ATP is induced by Ca2+ while rapid dephosphorylation requires the presence of Mg2+. At higher concentrations Mn2+ and Ni2+ inhibit predominantly the formation of EP, while Co2+ and Fe2+ block dephosphorylation. The possible sites and nature of the divalent metal interactions with the red cell calcium pump are discussed. Hydroxylamine-insensitive membrane phosphorylation in inside-out vesicles from [γ-32P]ATP is significantly stimulated by Mn2+ and Co2+, as compared to that produced by Mg2+, Fe2+ and Ni2+. Part of this labelling is found in phospholipids, especially in phosphatidylinositol. The results presented for the metal dependency of protein and lipid phosphorylation in red cell membranes may help in the characterization of ATP consumptions directly related to the calcium pump and those involved in various regulatory processes.  相似文献   

7.
Summary Patch-clamp studies of cytoplasmic drops from the charophyteChara australis have previously revealed K+ channels combining high conductance (170 pS) with high selectivity for K+, which are voltage activated. The cation-selectivity sequence of the channel is shown here to be: K+>Rb+>NH 4 + Na+ and Cl. Divalent cytosolic ions reduce the K+ conductance of this channel and alter its K+ gating in a voltage-dependent manner. The order of blocking potency is Ba2+>Sr2+>Ca2+>Mg2+. The channel is activated by micromolar cytosolic Ca2+, an activation that is found to be only weakly voltage dependent. However, the concentration dependence of calcium activation is quite pronounced, having a Hill coefficient of three, equivalent to three bound Ca2+ needed to open the channel. The possible role of the Ca2+-activated K+ channel in the tonoplast ofChara is discussed.  相似文献   

8.
AIM: The aim of this work was to study the influence of different cations on the enterocin CRL35 activity. METHODS AND RESULTS: The antilisterial activity of enterocin CRL35 was tested by performing viability curves and measuring the dissipation of the proton motive force by fluorescent methods upon the addition of Ca2+, Mg2+, Li+, K+ and Na+ chlorides. The peptide uptake by sensitive cells was studied in the different conditions as well. The addition of calcium and magnesium chlorides (0.5-2 mmol l(-1)) induced an inhibition of the peptide activity. Potassium, sodium and lithium chlorides have an inhibitory effect as well, but at different range of concentration compared with divalent cations (50-150 mmol l(-1)). Interestingly, we found a differential protection effect among monovalent ions, KCl being almost nonprotective, meanwhile LiCl shows the stronger effect and NaCl has an intermediate effect. The ion effect depends on the pH, being more efficient in acidic media. Both mono and divalent ions inhibited the ability of the peptide to dissipate the transmembrane electric potential and pH gradient. Furthermore, the peptide uptake was also inhibited. CONCLUSIONS: The enterocin CRL35 activity is strongly dependent on the pH and the nature of the salts present in the medium. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings will allow definition of the best system in which this peptide can be applied as biopreservative.  相似文献   

9.
The effect of divalent metals on the interaction and mixing of membrane components in vesicles prepared from acidic phospholipids has been examined using freeze-fracture electron microscopy and differential scanning calorimetry. Ca2+, and to a certain extent Mg2+, induce extensive mixing of vesicle membrane components and drastic structural rearrangements to form new membranous structures. In contrast to the mixing of vesicle membrane components in the absence of Ca2+ described in the accompanying paper which occurs via diffusion of lipid molecules between vesicles, mixing of membrane components induced by Ca2+ or Mg2+ results from true fusion of entire vesicles. There appears to be a “threshold” concentration at which Ca2+ and Mg2+ become effective in inducing vesicle fusion and the threshold concentration varies for different acidic phospholipid species. Different phospholipids also vary markedly in their relative responsiveness to Ca2+ and Mg2+, with certain phospholipids being much more susceptible to fusion by Ca2+ than Mg2+. Vesicle fusion induced by divalent cations also requires that the lipids of the interacting membranes be in a “fluid” state (T > Tc). Fusion of vesicle membranes by Ca2+ and Mg2+ does not appear to be due to simple electrostatic charge neutralization. Rather the action of these cations in inducing fusion is related to their ability to induce isothermal phase transitions and phase separations in phospholipid membranes. It is suggested that under these conditions membranes become transiently susceptible to fusion as a result of changes in molecular packing and creation of new phase boundaries induced by Ca2+ (or Mg2+).  相似文献   

10.
Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity.  相似文献   

11.
Summary Deeply dark adapted (1 h) photoreceptor cells of the honey bee drone show a light-induced enhancement of sensitivity (facilitation) as an aftereffect of illumination or in the presence of dim backgrounds.The Ca2+-dependency of this effect was studied: Reduction of extracellular Ca2+ to 0.1 mM decreases the sensitivity of a dark adapted cell, and the light-induced increase in sensitivity due to repetitive, dim, 20 ms test flashes is slower than in normal saline. After a sensitizing conditioning light, the sensitivity drops faster in low-calcium saline. The light-induced enhancement of sensitivity is mimicked by pressure injections of low amounts of Ca2+ (Ca2+/EGTA-buffers; 0.15 M free Ca2+) into a dark adapted cell. Injection of EGTA alone decreases the sensitivity. Injection of a solution containing ca1 mM free Ca2+ sequentially decreases and later increases the sensitivity transiently.These results suggest a model in which a progressive increase in intracellular Ca2+ concentration by light first increases (facilitates), and, at higher concentrations, decreases (light adapts) the sensitivity of the cells. One possible site of action for this positive and negative feedback control of cell sensitivity by Ca2+ is the endoplasmic reticulum.  相似文献   

12.
The radius of gyration (R(g)) of bovine trypsinogen and beta-trypsin was measured by an energy-dispersive X-ray technique as a function of Ca(2+) or SO(4)(2-) concentration; these results have been supplemented with measurements of association equilibrium constants of Ca(2+) to its binding site(s) on both serine proteases and some of their adducts (with an effector and/or an inhibitor). As a whole, all information reported in the present work demonstrates that: (i) the strains exerted by different ions on these proteases produce diverse structural modifications; and (ii) at least in the case of Ca(2+), the changes in R(g) can be ascribed to the direct interaction of the binding site(s) on the protein matrix with the cation.  相似文献   

13.
Mechanisms that regulate water channels in the plant plasma membrane (PM) were investigated in Arabidopsis suspension cells. Cell hydraulic conductivity was measured with a cell pressure probe and was reduced 4-fold as compared to control values when calcium was added in the pipette and in bathing solution. To assess the significance of these effects in vitro, PM vesicles were isolated by aqueous two-phase partitioning and their water transport properties were characterized by stopped-flow spectrophotometry. Membrane vesicles isolated in standard conditions exhibited reduced water permeability (P(f)) together with a lack of active water channels. In contrast, when prepared in the presence of chelators of divalent cations, PM vesicles showed a 2.3-fold higher P(f) and active water channels. Furthermore, equilibration of purified PM vesicles with divalent cations reduced their P(f ) and water channel activity down to the basal level of membranes isolated in standard conditions. Ca2+ was the most efficient with a half-inhibition of P(f) at 50-100 microM free Ca2+. Water transport in purified PM vesicles was also reversibly blocked by H+, with a half-inhibition of P(f )at pH 7.2-7.5. Thus, both Ca2+ and H+ contribute to a membrane-delimited switch from active to inactive water channels that may allow coupling of water transport to cell signalling and metabolism.  相似文献   

14.
The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the cytoplasmic TKD. Me2+ interactions with the cytoplasmic kinase domain apparently result in conformational changes which regulate the levels of tyrosine kinase activity, influence the degree to which this activity is responsive to EGF, and probably account for the effects of Me2+ on the aggregation state of the receptor (Carraway, K.L., III, Koland, J.G. and Cerione, R.A. (1989) J. Biol. Chem. 264, 8699-8707). In general, Mg2(+)-induced conformation changes prime the receptor for activation by EGF, while Mn2+ can fully activate the receptor tyrosine kinase and thereby short-circuit growth factor control.  相似文献   

15.
The protective effect of Ca2+, Zn2+ and H+ against membrane damage induced by different haemolytic agents has been studied by measuring monovalent cation leakage and haemolysis of erythrocytes, and phosphoryl[3H]choline and adenine nucleotide leakage from Lettre cells prelabelled with [3H]choline. The protective effect of Ca2+ and Zn2+ on erythrocytes damaged by Staphylococcus aureus alpha-toxin, Sendai virus or melittin is unaffected by the addition of A23187, even though this ionophore greatly increases the uptake of 45Ca2+ or 65Zn2+. The same result has been found for the protective effect of Zn2+ on Lettre cells damaged by S. aureus alpha-toxin, Sendai virus, melittin or Triton X-100. Leakage of phosphoryl[3H]choline from prelabelled Lettre cells is inhibited if extracellular pH is lowered; lowering the intracellular pH without affecting the extracellular pH, affords little protection. It is concluded that Ca2+, Zn2+ and H+ protect cells against membrane damage induced by haemolytic agents by an action at the extracellular side of the plasma membrane.  相似文献   

16.
Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca2+ from the cell. Specific Ca2+-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 μg/ml to 1 μg/ml. The activation by dilution was also observed for ATP-dependent Ca2+ uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca2+ or Ca2+-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.  相似文献   

17.
Summary Direct inhibitory effects of Ca2+ and other ions on the epithelial Na+ channels were investigated by measuring the amiloride-blockable22Na+ fluxes in toad bladder vesicles containing defined amounts of mono- and divalent ions. In agreement with a previous report (H.S. Chase, Jr., and Q. Al-Awqati,J. Gen. Physiol. 81:643–666, 1983) we found that the presence of micromolar concentrations of Ca2+ in the internal (cytoplasmic) compartment of the vesicles substantially lowered the channel-mediated fluxes. This inhibition, however, was incomplete and at least 30% of the amiloride-sensitive22Na+ uptake could not be blocked by Ca2+ (up to 1mm). Inhibition of channels could also be induced by millimolar concentrations of Ba2+, Sr2+, or VO2+, but not by Mg2+. The Ca2+ inhibition constant was a strong function of pH, and varied from 0.04 m at pH 7.8 to >10 m at pH 7.0 Strong pH effects were also demonstrated by measuring the pH dependence of22Na+ uptake in vesicles that contained 0.5 m Ca2+. This Ca2+ activity produced a maximal inhibition of22Na+ uptake at pH7.4 but had no effect at pH7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over this range. The data is compatible with the model that Ca2+ blocks channels by binding to a site composed of several deprotonated groups. The protonation of any one of these groups prevents Ca2+ from binding to this site but does not by itself inhibit transport. The fact that the apical Na+ conductance in vesicles, can effectively be modulated by minor variations of the internal pH near the physiological value, raises the possibility that channels are being regulated by pH changes which alter their apparent affinity to cytoplasmic Ca2+, rather than, or in addition to changes in the cytoplasmic level of free Ca2+.  相似文献   

18.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

19.
In biological systems, enzymes often use metal ions, especially Mg2+, to catalyze phosphodiesterolysis, and model aqueous studies represent an important avenue of examining the contributions of these ions to catalysis. We have examined Mg2+ and Ca2+ catalyzed hydrolysis of the model phosphodiester thymidine-5′-p-nitrophenyl phosphate (T5PNP). At 25 °C, we find that, despite their different Lewis acidities, these ions have similar catalytic ability with second-order rate constants for attack of T5PNP by hydroxide (kOH) of 4.1 × 10−4 M−1s−1 and 3.7 × 10−4 M−1s−1 in the presence of 0.30 M Mg2+ and Ca2+, respectively, compared to 8.3 × 10−7 M−1s−1 in the absence of divalent metal ion. Examining the dependence of kOH on [M2+] at 50 °C indicates different kinetic mechanisms with Mg2+ utilizing a single ion mechanism and Ca2+ operating by parallel single and double ion mechanisms. Association of the metal ion(s) occurs prior to nucleophilic attack by hydroxide. Comparing the kOH values reveals a single Mg2+ catalyzes the reaction by 1800-fold whereas a single Ca2+ ion catalyzes the reaction by only 90-fold. The second Ca2+ provides an additional 10-fold catalysis, significantly reducing the catalytic disparity between Mg2+ and Ca2+.  相似文献   

20.
To investigate the contribution of the dopamine (DA) synthesis to both the calcium-dependent and the carrier-mediated, mechanisms of DA release in the striatum, anaesthetized rats were locally superfused in the striatum with a push–pull cannula supplied with an artificial CSF containing tritiated tyrosine. DA, dihydroxyphenylacetic acid (DOPAC) and their respective specific activity were measured in effluent and used to evaluate changes in the DA synthesizing rate. Excluding calcium ions from the CSF only partially reduced spontaneous DA release (70%) still leaving a possible carrier-mediated DA release. This effect was not additive with a local superfusion with 0.1 mM a-methyl-p-tyrosine, a blocker of DA synthesis, suggesting that synthesis could already be reduced by calcium-free superfusion. Local superfusion with 100 μM cadmium in the presence or not of calcium ions, increased the DA release (220 and 350%, respectively), simultaneously reducing DA synthesis. Local application of 1 μM calcium ionophore (A23187) was without effect on the basal release of DA but enhanced DA synthesis and increased the amphetamine-evoked and carrier-mediated amine release. We conclude that DA synthesis can be a modulatory process of the firing-independent and carrier-mediated amine release while it weakly affects the classical calcium-dependent release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号