首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

2.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

3.
PTPN22 encodes a tyrosine phosphatase that inhibits Src-family kinases responsible for Ag receptor signaling in lymphocytes and is strongly linked with susceptibility to a number of autoimmune diseases. As strength of TCR signal is critical to the thymic selection of regulatory T cells (Tregs), we examined the effect of murine PTPN22 deficiency on Treg development and function. In the thymus, numbers of pre-Tregs and Tregs increased inversely with the level of PTPN22. This increase in Tregs persisted in the periphery and could play a key part in the reduced severity observed in the PTPN22-deficient mice of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This could explain the lack of association of certain autoimmune conditions with PTPN22 risk alleles.  相似文献   

4.
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

5.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

6.
To ensure immune tolerance, regulatory T cell (Treg) numbers must be maintained by cell division. This process has been thought to be strictly dependent on the Treg TCR interacting with MHC class II. In this study, we report that Treg division does not absolutely require cell-autonomous TCR signaling in vivo, depending on the degree of IL-2-mediated stimulation provided. At steady state IL-2 levels, Tregs require cell-autonomous TCR signaling to divide. However, when given exogenous IL-2 or when STAT5 is selectively activated in Tregs, Treg division can occur independently of MHC class II and TCR signaling. Thus, depending on the amount of IL-2R stimulation, a wide range of TCR signals supports Treg division, which may contribute to preservation of a diverse repertoire of Treg TCR specificities. These findings also have therapeutic implications, as TCR signaling by Tregs may not be required when using IL-2 to increase Treg numbers for treatment of inflammatory disorders.  相似文献   

7.
We have shown that mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) manifest enhanced sensitivity to experimental autoimmune encephalomyelitis (EAE), supporting the anti-inflammatory actions described for this neuropeptide. In addition to an increased proinflammatory cytokine response in these mice, a reduction in regulatory T cell (Treg) abundance in the lymph nodes (LN) was observed, suggesting altered Treg kinetics. In the present study, we compared in PACAP deficient (KO) vs. wild type mice the abundances and rates of proliferation FoxP3+ Tregs in three sites, the LN, central nervous system (CNS) and thymus and the relative proportions of Th1, Th2, and Th17 effector subsets in the LN and CNS. Flow cytometry analyses revealed a decrease in Treg proliferation and an increased T effector/Tregs ratio in the LN and CNS of PACAP KO mice. In the thymus, the primary site of do novo natural Treg production, the total numbers and proliferative rates of FoxP3+ Tregs were significantly reduced. Moreover, the expression of IL-7, a cytokine implicated in thymic Treg expansion during EAE, failed to increase at the peak of the disease in the thymus and LN of PACAP KO mice. In addition to these Treg alterations, a specific reduction of Th2 cells (about 4-fold) was observed in the lymph nodes in PACAP KO mice, with no effects on Th1 and Th17 subsets, whereas in the CNS, Th1 and Th17 cells were increased and Th2 decreased. Our results suggest that endogenous production of the neuropeptide PACAP protects against EAE by modulating Treg expansion and Th subsets at multiple sites.  相似文献   

8.
The binding of herpesvirus entry mediator (HVEM) to B and T lymphocyte attenuator (BTLA) is known to activate an inhibitory signaling cascade in effector T (Teff) cells, but we now report that the HVEM-BTLA pathway is also important to the suppressive function of regulatory T cells (Tregs). Although naive T cells up-regulated BTLA upon TCR activation, Treg expression of BTLA remained low, regardless of TCR activation. Moreover, BTLA(-/-) CD4(+)CD25(+) Tregs had normal suppressive activity, whereas BTLA(-/-) Teff cells were more resistant than wild-type Teff cells to suppression by Tregs, suggesting BTLA expression by Teff cells was required for their suppression by Tregs. In contrast to BTLA, HVEM expression was comparable in naive Tregs vs Teff cells, but after stimulation HVEM expression was quickly down-regulated by Teff cells, whereas HVEM was further up-regulated by Tregs. HVEM(-/-) Tregs had decreased suppressive activity as compared with wild-type Tregs, indicating that Treg expression of HVEM was required for optimal suppression. Consistent with this, T cells from Scurfy mice (FoxP3 mutant) lacked HVEM gene expression, and adoptively transferred wild-type but not HVEM(-/-) Tregs were able to control alloresponses in vivo by normal Teff cells. Our data demonstrate that Tregs can exert their effects via up-regulation of the negative costimulatory ligand HVEM, which upon binding to BTLA expressed by Teff cells helps mediate the suppressive functions of Tregs in vitro and in vivo.  相似文献   

9.
IL-2 controls the survival of regulatory T cells (Tregs), but it is unclear whether IL-2 also directly affects Treg suppressive capacity in vivo. We have found that eliminating Bim-dependent apoptosis in IL-2- and CD25-deficient mice restored Treg numbers but failed to cure their lethal autoimmune disease, demonstrating that IL-2-dependent survival and suppressive activity can be uncoupled in Tregs. Treatment with IL-2-anti-IL-2-Ab complexes enhanced the numbers and suppressive capacity of IL-2-deprived Tregs with striking increases in CD25, CTLA-4, and CD39/CD73 expression. Although cytokine treatment induced these suppressive mechanisms in both IL-2(-/-) and IL-2(-/-)Bim(-/-) mice, it only reversed autoimmune disease in the latter. Our results suggest that successful IL-2 therapy of established autoimmune diseases will require a threshold quantity of Tregs present at the start of treatment and show that the suppressive capacity of Tregs critically depends on IL-2 even when Treg survival is independent of this cytokine.  相似文献   

10.
11.
12.
Regulatory T cells (Tregs) are essential for controlling peripheral tolerance by the active suppression of various immune cells including conventional T effector cells (Teffs). Downstream of the T cell receptor (TCR), more than 500 protein kinases encoded by the human genome have to be considered in signaling cascades regulating the activation of Tregs and Teffs, respectively. Following TCR engagement, Tregs posses a number of unique attributes, such as constitutive expression of Foxp3, hyporesponsiveness and poor cytokine production. Furthermore, recent studies showed that altered regulation of protein kinases is important for Treg function. These data indicate that signaling pathways in Tregs are distinctly organized and alterations at the level of protein kinases contribute to the unique Treg phenotype. However, kinase-based signaling networks in Tregs are poorly understood and necessitate further systematic characterization. In this study, we analyzed the differential expression of kinases in Tregs and Teffs by using a kinase-selective proteome strategy. In total, we revealed quantitative information on 185 kinases expressed in the human CD4(+) T cell subsets. The majority of kinases was equally abundant in both T cell subsets, but 11 kinases were differentially expressed in Tregs. Most strikingly, Tregs showed an altered expression of cell cycle kinases including CDK6. Quantitative proteomics generates first comparative insight into the kinase complements of the CD4(+) Teff and Treg subset. Treg-specific expression pattern of 11 protein kinases substantiate the current opinion that TCR-mediated signaling cascades are altered in Tregs and further suggests that Tregs exhibit significant specificities in cell-cycle control and progression.  相似文献   

13.
14.
Thymic-derived natural T regulatory cells (Tregs) are characterized by functional and phenotypic heterogeneity. Recently, a small fraction of peripheral Tregs has been shown to express Klrg1, but it remains unclear as to what extent Klrg1 defines a unique Treg subset. In this study, we show that Klrg1(+) Tregs represent a terminally differentiated Treg subset derived from Klrg1(-) Tregs. This subset is a recent Ag-responsive and highly activated short-lived Treg population that expresses enhanced levels of Treg suppressive molecules and that preferentially resides within mucosal tissues. The development of Klrg1(+) Tregs also requires extensive IL-2R signaling. This activity represents a distinct function for IL-2, independent from its contribution to Treg homeostasis and competitive fitness. These and other properties are analogous to terminally differentiated short-lived CD8(+) T effector cells. Our findings suggest that an important pathway driving Ag-activated conventional T lymphocytes also operates for Tregs.  相似文献   

15.
Although Foxp3(+) regulatory T cells (Tregs) are thought to express autoreactive TCRs, it is not clear how individual TCRs influence Treg development, phenotype, and function in vivo. We have generated TCR transgenic mice (termed SFZ70 mice) using Tcra and Tcrb genes cloned from an autoreactive CD4(+) T cell isolated from a Treg-deficient scurfy mouse. The SFZ70 TCR recognizes a cutaneous autoantigen and drives development of both conventional CD4(+) Foxp3(-) T cells (T(conv)) and Foxp3(+) Tregs. SFZ70 Tregs display an activated phenotype evidenced by robust proliferation and expression of skin-homing molecules such as CD103 and P-selectin ligand. Analysis of Foxp3-deficient SFZ70 mice demonstrates that Tregs inhibit T(conv) cell expression of tissue-homing receptors and their production of proinflammatory cytokines. In addition, Treg suppression of SFZ70 T(conv) cells can be overcome by nonspecific activation of APCs. These results provide new insights into the differentiation and function of tissue-specific Tregs in vivo and provide a tractable system for analyzing the molecular requirements of Treg-mediated tolerance toward a cutaneous autoantigen.  相似文献   

16.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4?+?T cells producing IL-17 and CD4?+?CD25highFoxP3?+?Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4?+?CD25highFoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.  相似文献   

17.
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.  相似文献   

18.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

19.
The immune system is complex, with multiple layers of regulation that serve to prevent the production of self-antigens. One layer of regulation involves regulatory T cells (Tregs) that play an essential role in maintaining peripheral self-tolerance. Patients with autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis have decreased levels of HDL, suggesting that apoA-I concentrations may be important in preventing autoimmunity and the loss of self-tolerance. In published studies, hypercholesterolemic mice lacking HDL apoA-I or LDLr−/−, apoA-I−/− (DKO), exhibit characteristics of autoimmunity in response to an atherogenic diet. This phenotype is characterized by enlarged cholesterol-enriched lymph nodes (LNs), as well as increased T cell activation, proliferation, and the production of autoantibodies in plasma. In this study, we investigated whether treatment of mice with lipid-free apoA-I could attenuate the autoimmune phenotype. To do this, DKO mice were first fed an atherogenic diet containing 0.1% cholesterol, 10% fat for 6 weeks, after which treatment with apoA-I was begun. Subcutaneous injections of 500 μg of lipid-free apoA-I was administered every 48 h during the treatment phase. These and control mice were maintained for an additional 6 weeks on the diet. At the end of the 12-week study, DKO mice showed decreased numbers of LN immune cells, whereas Tregs were proportionately increased. Accompanying this increase in Tregs was a decrease in the percentage of effector/effector memory T cells. Furthermore, lipid accumulation in LN and skin was reduced. These results suggest that treatment with apoA-I reduces inflammation in DKO mice by augmenting the effectiveness of the LN Treg response.  相似文献   

20.
Regulatory T (Treg) cells are being used to treat autoimmunity and prevent organ rejection; however, Treg cell-based therapies have been hampered by the technical limitation in obtaining a high number of functional Treg cells. In this study, we show how to generate functional Treg cells from induced pluripotent stem (iPS) cells and to determine the potential role of such cells for Treg cell-based immunotherapy against autoimmunity in a therapeutic setting. Ligation of a Notch ligand and transduction of the gene Foxp3 induce iPS cells to differentiate into Treg cells. Expression of Foxp3 and coculture on Notch ligand-expressing stromal cells augment expression of CD3, TCR, CD4, CD25, and CTLA-4 on iPS cell-differentiated Treg cells, which are able to secrete TGF-β and IL-10 both in vivo and in vitro. Importantly, adoptive transfer of iPS cell-derived Treg cells expressing large amounts of Foxp3 and Bcl-x(L) significantly suppresses host immune responses and reduces arthritis development within murine models. These data suggest that Notch signaling and Foxp3 regulate the development and function of Treg cells derived from iPS cells. Our results provide a novel approach for generating potentially therapeutic Treg cells for the treatment of autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号