首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers — OS) or completely (dense shell glycodendrimers — DS) modified with maltose residues. As a model membrane, two types of 100 nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.  相似文献   

2.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The approximately 55-kDa protein was identified as beta2-glycoprotein I (beta2GPI) by Western blotting. Despite the high affinity of beta2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, beta2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

3.
The binding of penetratin, a peptide that has been found useful for cellular delivery of large hydrophilic molecules, to negatively charged vesicles was investigated. The surface charge density of the vesicles was varied by mixing zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) at various molar ratios. The extent of membrane association was quantified from tryptophan emission spectra recorded during titration of peptide solution with liposomes. A singular value decomposition of the spectral data demonstrated unambiguously that two species, assigned as peptide free in solution and membrane-bound peptide, respectively, account for the spectral data of the titration series. Binding isotherms were then constructed by least-squares projection of the titration spectra on reference spectra of free and membrane-bound peptide. A model based on the Gouy-Chapman theory in combination with a two-state surface partition equilibrium, separating the electrostatic and the hydrophobic contributions to the binding free energy, was found to be in excellent agreement with the experimental data. Using this model, a surface partition constant of approximately 80 M(-)(1) was obtained for the nonelectrostatic contribution to the binding of penetratin irrespective of the fraction of negatively charged lipids in the membrane, indicating that the hydrophobic interactions are independent of the surface charge density. In accordance with this, circular dichroism measurements showed that the secondary structure of membrane-associated penetratin is independent of the DOPC/DOPG ratio. Experiments using vesicles with entrapped carboxyfluorescein showed that penetratin does not form membrane pores. Studies of the cationic peptide penetratin are complicated by extensive adsorption to surfaces of quartz and plastics. By modification of the quartz cell walls with the cationic polymer poly(ethylenimine), the peptide adsorption was reduced to a tolerable level. The data analysis method used for construction of the binding isotherms eliminated errors emanating from the remaining peptide adsorption, which otherwise would prevent a proper quantification of the binding.  相似文献   

4.
In this study we investigated, spectroscopically, the effect of electrolytes on the partitioning of hematoporphyrin IX (HP) and hypericin (Hy) into non-charged lipid vesicles. Our aim was to assess the salting-out effect of electrolytes on membrane-partitioning. We titrated aqueous solutions of HP and Hy with lecithin liposomes, at different concentrations of several monovalent and divalent electrolytes in the suspension. The partitioning constant of HP to lecithin liposomes increased from 3.3 (mL/mg) in water containing only 5mM buffer to 8.7 (mL/mg) at 0.36M KCl. KF had a similar effect. NaCl caused a 3-fold increase in the partitioning of Hy to liposomes. MgSO(4) and MgCl(2) also increased the partitioning of HP, by a factor of more than 4 and this occurred already at 0.03M concentration. We analyze the comparative effects of the electrolytes in relation to the Hofmeister series. The salting-out effect could be utilized to enhance the uptake of HP and Hy, and possibly other photosensitizers as well, by artificial and natural membranes.  相似文献   

5.
S F Sui  T Urumow  E Sackmann 《Biochemistry》1988,27(19):7463-7469
In the first part, we study the interaction of the insulin receptor with model membranes of dimyristoylphosphatidylcholine (DMPC) by various techniques, including calorimetry, densitometry, static light scattering, and electron microscopy. By analyzing the pronounced depression of the lipid chain melting transition in terms of the Van Laar-Hildebrand theory of regular dilute solutions, an (exothermic) interaction energy of Wp = 2000 kJ.mol-1 is found for the receptor and of WL = 0.6 kJ.mol-1 for the lipid. This is interpreted in terms of an adsorption of the 2 hydrophilic head groups of the receptor to the membrane surface so that 1 protein interacts with about 2000 lipids. This number is verified by freeze-fracture electron microscopy. Binding of insulin induces a remarkable decoupling of the receptor head group from the membrane, pointing to a pronounced conformational change. In the second part, we introduce a simple fluorescence technique by which adsorption isotherms of water-soluble and fluorescent-labeled substrates, such as insulin, to membranes may be determined. It is based on the selective evanescent field excitation of ligands adsorbed to supported planar bilayers on argon-sputtered glass plates. These are deposited by the monolayer transfer technique or by vesicle condensation. The reconstituted receptor exhibits a weak (binding constant Kw = 3 X 10(9) L.M-1) and a strong (binding constant Ks greater than 10(10) L.M-1) binding site. Insulin exhibits a weak but remarkable nonspecific binding to bilayers of pure DMPC and DMPC containing 20% positively charged lipid and a strong binding to DMPC containing negatively charged lipids such as phosphatidylserine or ganglioside (GT1b).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule. The absorption and fluorescene excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca-2+ stongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes. With mitochondrial membranes an effect of Ca-2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochrondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it. From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholiped moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

7.
Two spin-labeled derivatives of the hydrophobic anion trinitrophenol have been synthesized and characterized in lipid vesicles. In the presence of lipid vesicles, the electron paramagnetic resonance (EPR) spectra of these probes are a composite of both membrane-bound and aqueous populations; as a result, the membrane-aqueous partitioning can be determined from their electron paramagnetic resonance spectra. The effect of transmembrane potentials on the membrane-aqueous partitioning of these spin-labeled hydrophobic ions was examined in phosphatidylcholine vesicles formed by extrusion. Inside positive membrane potentials promote an increase in the binding of these probes that is quantitatively accounted for by a simple thermodynamic model used previously to describe the partitioning of paramagnetic phosphonium ions. The transmembrane migration rates of these ions are dependent on the dipole potential, indicating that these ions transit the membrane in a charged form. The partitioning of the probe is also sensitive to the membrane surface potential, and this dependence is accurately accounted for using the Gouy-Chapman Stern formalism. As a result of the membrane dipole potential, these probes exhibit a stronger binding and a more rapid transmembrane migration rate compared with positive hydrophobic ion spin labels and provide a new set of negatively charged hydrophobic ion probes to investigate membrane electrostatics.  相似文献   

8.
A Gallusser  A Kuhn 《The EMBO journal》1990,9(9):2723-2729
Bacteriophage M13 procoat protein is synthesized on free polysomes prior to its assembly into the inner membrane of Escherichia coli. As an initial step of the membrane insertion pathway, the precursor protein interacts with the cytoplasmic face of the inner membrane. We have used oligonucleotide-directed mutagenesis to study the regions of the procoat protein involved in membrane binding. We find that there is an absolute requirement for positively charged amino acids at both ends of the protein. Replacing these with negatively charged residues resulted in an accumulation of the precursor in the cytoplasm. We propose that the positively charged amino acids are directly involved in membrane binding, possibly directly to the negatively charged phospholipid head groups. This was tested in vitro with artificial liposomes. Whereas wild-type procoat interacted with these liposomes, we found that procoat mutants with negatively charged amino acids at both ends did not bind. Therefore, we conclude that newly synthesized M13 procoat protein binds electrostatically to the negatively charged inner membrane of E. coli.  相似文献   

9.
The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate.  相似文献   

10.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The ∼55-kDa protein was identified as β2-glycoprotein I (β2GPI) by Western blotting. Despite the high affinity of β2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, β2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

11.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

12.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

13.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   


14.
The influence of the binding of poly(l-lysine) (PLL) to negatively charged membranes containing phosphatidylglycerols (PG) was studied by DSC and FT-IR spectroscopy. We found a general increase in the main transition temperature as well as increase in hydrophobic order of the membrane upon PLL binding. Furthermore we observed stronger binding of hydration water to the lipid head groups after PLL binding. The secondary structure of the PLL after binding was studied by FT-IR spectroscopy. We found that PLL binds in an α-helical conformation to negatively charged DPPG membranes or membranes with DPPG-rich domains. Moreover we proved that PLL binding induces domain formation in the gel state of mixed DPPC/DPPG or DMPC/DPPG membranes as well as lipid remixing in the liquid–crystalline state. We studied these effects as a function of PLL chain length and found a significant dependence of the secondary structure, phase transition temperature and domain formation capacity on PLL chain length and also a correlation between the peptide secondary structure and the phase transition temperature of the membrane. We present a system in which the membrane phase transition triggers a highly cooperative secondary structure transition of the membrane-bound peptide from α-helix to random coil. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

15.
Small unilamellar vesicles (SUVs) formed from a mixture of dimyristoylphosphatidylcholine (zwitterionic lipid with bulkier headgroup) and dimyristoylphosphatidylglycerol (anionic lipid with relatively smaller headgroup) allows better modulation of the physical properties of lipid bilayers compared to SUVs formed by a single type of lipid, providing us with a better model system to study the effect of membrane parameters on the partitioning of small molecules. Membrane parameter like packing of the vesicles is more pronounced in the gel phase and hence the study was carried out in the gel phase. Mixed vesicles formed from DMPG and DMPC with the mole percent ratio of 100:0, 90:10 and 80:20 were used for this study. As examples of polar solutes, piroxicam and meloxicam, two Non Steroidal Anti-inflammatory Drugs (NSAIDs) were chosen. The pH was adjusted to 2.8 in order to eliminate the presence of anionic forms of the drugs that would not approach the vesicles containing negatively charged DMPG (50% deprotonated at pH 2.8). Surface potential measured by using TNS (2,6-p-toluidinonaphthalene sulfonate, sodium salt) as surface charge sensitive probe showed no significant changes in the surface electrostatics in increasing DMPC content from 0 to 20%. Transmission electron microscopy (TEM) was used to characterize SUVs of different composition at pH 2.8. The average diameter of the mixed vesicles was found to be smaller than that formed by DMPG and DMPC alone. Partition coefficient (K(P)) of piroxicam and meloxicam was measured using intrinsic fluorescence of these molecules. K(P) value of piroxicam decreases with increase in DMPC content whereas it increases with DMPC content in case of meloxicam. This anomalous behavior of partitioning is unexpected since there was no significant change in surface pH of the vesicles and has been explained in terms of lipid packing and water penetration in the lipid bilayer.  相似文献   

16.
We previously reported that gentamicin binds to liposomes composed of anionic phospholipids and depresses glycerol permeability and raises the activation energy for glycerol permeation in these liposomes. We postulated that these changes in the glycerol permeability and in the activation energy (Ea) for glycerol permeation were due to hydrogen bonding between O-C = O groups in the hydrogen belt and one or more amino groups of gentamicin. To test this hypothesis, we examined the effects of gentamicin on the membrane surface potential, the glycerol permeability coefficient (p), the Ea for glycerol permeation, and the aggregation of liposomes composed of 1:1 phosphatidylcholine (PC) and phosphatidic acid with the acyl chains of phosphatidic acid in either an ester (PA) or an ether (PA*) linkage. Gentamicin depressed the membrane surface electrostatic potential, measured by the partitioning of methylene blue between the bulk solution and the liposomal membrane, to an equivalent degree in PC-PA and PC-PA* liposomes, which indicates that substitution of the ether for the ester linkage did not interfere with the electrostatic interaction between the cationic drug and the negatively charged phosphate head group. Gentamicin caused a temperature-dependent decrease of p and raised Ea for glycerol permeation from 17.7 +/- 0.3 to 21.6 +/- 0.4 kcal/mol in PC-PA liposomes but had little or no effect on these parameters in PC-PA* liposomes. In contrast, gentamicin induced a significantly greater degree of aggregation of PC-PA* liposomes compared to that of PC-PA liposomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Various plants use antimicrobial proteins/peptides to resist phytopathogens. In the potato, Solanum tuberosum, the plant-specific insert (PSI) domain of an aspartic protease performs this role by disrupting phytopathogen plasma membranes. However, the mechanism by which PSI selects target membranes has not been elucidated. Here, we studied PSI-induced membrane fusion, focusing on the effects of lipid composition on fusion efficiency. Membrane fusion by the PSI involves an intermediate state whereby adjacent liposomes share their bilayers. We found that increasing the concentration of negatively charged phosphatidylserine (PS) phospholipids substantially accelerated PSI-mediated membrane fusion. NMR data demonstrated that PS did not affect the binding between the PSI and liposomes but had seminal effects on the dynamics of PSI interaction with liposomes. In PS-free liposomes, the PSI underwent significant motion, which was suppressed on PS-contained liposomes. Molecular dynamics simulations showed that the PSI binds to PS-containing membranes with a dominant angle ranging from −31° to 30°, with respect to the bilayer, and is closer to the membrane surfaces. In contrast, PSI is mobile and exhibits multiple topological states on the surface of PS-free membranes. Taken together, our data suggested that PS lipids limit the motion of the anchored PSI, bringing it closer to the membrane surface and efficiently bridging different liposomes to accelerate fusion. As most phytopathogens have a higher content of negatively charged lipids as compared with host cells, these results indicate that the PSI selectively targets negatively charged lipids, which likely represents a way of distinguishing the pathogen from the host.  相似文献   

18.
The energetics and partition of two hybrid peptides of cecropin A and melittin (CA(1-8)M(1-18) and CA(1-7)M(2-9)) with liposomes of different composition were studied by time-resolved fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance. The study was carried out with large unilamellar vesicles of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG), and a 3:1 binary mixture of DMPC/DMPG in a wide range of peptide/lipid ratios. The results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, giving rise to aggregation and precipitation. A correlation is observed in the calorimetric experiments between the observed events and charge neutralization for negatively charged and mixed membranes. In the case of zwitterionic membranes, a very interesting case study was obtained with the smaller peptide, CA(1-7)M(2-9). The calorimetric results obtained for this peptide in a large range of peptide/lipid ratios can be interpreted on the basis of an initial and progressive surface coverage until a threshold concentration, where the orientation changes from parallel to perpendicular to the membrane, followed by pore formation and eventually membrane disruption. The importance of negatively charged lipids on the discrimination between bacterial and eukaryotic membranes is emphasized.  相似文献   

19.
The release of the internal content of negatively charged phosphatidylcholine/phosphatidylserine vesicles under the influence of high density lipoprotein was studied. Under standard conditions (the same composition outside and inside the compartment) the leakage of negative liposomes increased significantly. However, a high internal concentration of calcein provoked a sealing effect, exhibited both in sucrose and in calcein release. This sealing effect is not related to the size of vesicles, the fluidity of the membrane, the distribution of phosphatidylserine molecules, or the membrane potential. Our data indicate that surface potential influences this effect, probably in addition to a lateral pressure effect such as with cholesterol. The surface potential, as measured by the water-lipid partition coefficient of fatty acids, is strongly affected by internal ionic strength when liposomes contain calcein as well as other polyanions (6-carboxyfluorescein, sodium citrate).  相似文献   

20.
We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes tocharacterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). Whilethe sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids,especially cardiolipin, this report provides the first experimental evidence on the membraneinteraction of an uMtCK isoform. Qualitative measurements showed that liposomes containing16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochromec, but not bovine serum albumin. Quantitative parameters could be derived only for themembrane interaction of octameric human uMtCK using an improved analytical approach.Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneousinteraction suggesting two independent binding sites. Rate constants of the two sites differedby one order of magnitude, while their affinity constants were both about 80–100 nM. Thedata obtained demonstrate that surface plasmon resonance with immobilized liposomes is asuitable approach to characterize the binding of peripheral proteins to a lipid bilayer and thatthis method yields consistent quantitative binding parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号