首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:为了进一步增强重组蛋白质疫苗的细胞免疫应答,利用重组的IL-17作为分子佐剂,与卵清蛋白(ovalbumin,OVA)一起免疫小鼠,研究IL-17作为分子佐剂对适应性免疫的影响,探索IL-17对蛋白疫苗诱导的免疫反应,特别是细胞免疫应答的影响.方法:用OVA作为特异性蛋白疫苗,与不同剂量的IL-17联合免疫C57...  相似文献   

2.
3.
We have explored the in vivo effect of IL-3 on the lymphopoiesis and humoral responses of mice bearing osmotic minipumps loaded with murine rIL-3 for 1 to 4 wk. A marked splenomegaly due to the accumulation of hemopoietic precursors was seen, but no increase was found in the lymphoid organs in the total number of cells belonging to the T or B lymphocyte lineage, i.e., of L3T4+ or Lyt-2+, or of allospecific cytotoxic T lymphocyte precursor for the T lineage, or of sIg+ or B220+ cells, or of B colony-forming cells for the B lineage; total activity of natural killer and lymphokine-activated killer cells was decreased. In contrast to the splenomegaly, a marked diminution in the number of thymocytes was observed, suggesting that rIL-3 in large amounts does suppress the T lymphopoiesis, perhaps as the result of the selective stimulation of early progenitor cells toward the hemopoietic pathway. rIL-3 perfusion during immunization increased the IgM and IgG responses to a T cell-dependent antigen, human IgG, and prevented tolerance induction by the deaggregated human IgG, although in the same conditions it did not modify the response to a T cell-independent antigen. Our results suggest that in vivo IL-3 does not act directly on lymphocytes or their precursors, but may potentiate the humoral immune response to T cell-dependent antigens, presumably by acting on accessory cells.  相似文献   

4.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

5.
As a model for understanding in vivo immune responses, we have exposed mice to aqueous haptenated-protein Ag, and examined immune responses to subsequent immunization with Ag in adjuvant. Pretreating mice with soluble, TNP-conjugated Ag induces selective nonresponsiveness to Ag for both humoral and cell-mediated immune functions. Specific T cell proliferation in response to Ag is inhibited, and Ag-induced secretion of the lymphokines IL-2 and IFN-gamma, but not IL-4, is reduced. B cell responses after pretreatment are also affected. Although levels of TNP-specific IgG1 and IgE are similar in treated and untreated mice, soluble Ag pretreatment diminishes production of TNP-specific IgG2a and IgG2b. This is due to lack of T cell help and is not caused by tolerance in the B cell compartment. These results indicate that pretreatment of mice with aqueous Ag induces selective unresponsiveness in Th1-like Th cells, which secrete IL-2 and IFN-gamma, but not in Th2-like Th cells, which secrete IL-4.  相似文献   

6.
Resistance to Leishmania major in mice is associated with the generation of distinct CD4+ Th subsets, termed TH1 and TH2. To define the factors contributing to the genesis of these Th cells, we first investigated when these subsets developed following L. major infection. Lymph node (LN) cells collected 3 days after infection of BALB/c mice secreted IL-4 and IL-5 in vitro, but little IFN-gamma, whereas LN cells from a resistant strain, C3H/HeN, secreted IFN-gamma and no IL-4 or IL-5. Cytokine production was eliminated in both cases by in vivo or in vitro depletion of CD4+ cells, but not after depletion of CD8+ cells. Similar responses were observed after inoculation of killed promastigotes or a soluble leishmanial Ag preparation. These data indicate that the development of Th1- and Th2-like responses can precede lesion formation and does not require a live infection. We next investigated whether IFN-gamma was important in the differentiation of Th1 and Th2 cells. C3H/HeN mice have previously been shown to be susceptible to leishmanial infection after treatment with anti-IFN-gamma. We confirmed this observation and found that the abrogation of resistance was associated with enhanced production of IL-4 and IL-5, and decreased production of IFN-gamma by cells taken from these mice. Conversely, LN cells from BALB/c mice inoculated with parasites plus IFN-gamma produced significantly higher levels of IFN-gamma, and decreased levels of IL-4 and IL-5, than mice infected with parasites alone. Finally, we determined if IFN-gamma might augment vaccine induced immunity. We found that s.c. immunization with soluble leishmanial Ag, the bacterial adjuvant, Corynebacterium parvum and IFN-gamma could protect mice against L. major infection, and that this protection was associated with induction of Th1 responses. From these data we conclude that levels of IFN-gamma at the time of infection or immunization dramatically alters the type of response elicited: high levels of IFN-gamma favor Th1 type responses, whereas low levels promote a Th2 response.  相似文献   

7.
The growth factor requirements of cloned lines representing two major subsets of CD4+ T cells were examined. The helper subset, which produces IL-4 as its autocrine growth factor, proliferates in response to IL-2 or to IL-4 in the presence of IL-1. The inflammatory subset, which produces IL-2 as its autocrine growth factor, proliferates in response to IL-2 and, in the presence of limiting amounts of IL-2, shows increased proliferation in the presence of IL-4. The inflammatory subset does not proliferate in response to IL-1 plus IL-4. This ability to respond to the combination of IL-1 plus IL-4 correlates with the presence of IL-1R on the cloned lines tested. These data suggest that IL-1 may play a controlling role in the clonal expansion of CD4+ T cells of different functional types. This, in turn, suggests means by which the immune response could be directed into humoral or cell-mediated responses.  相似文献   

8.
Osorio Y  Ghiasi H 《Journal of virology》2003,77(10):5774-5783
The adjuvant effects of cytokines in humoral and cell-mediated immunity to herpes simplex virus type 1 (HSV-1) have been examined in mice using HSV-1 recombinant viruses expressing murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-gamma) gene. Groups of naive BALB/c mice were immunized intraperitoneally with one or three doses of the HSV-1 recombinant viruses expressing IL-2, IL-4, or IFN-gamma or with parental control virus. Despite similar replication kinetics, these three recombinant viruses elicited different immune responses to HSV-1 on immunization. Immunization with the recombinant virus expressing IL-4 elicited a humoral response of greater magnitude than immunization with the recombinant viruses expressing IL-2 or IFN-gamma or with parental virus. In contrast, immunization with recombinant virus expressing IL-2 elicited a higher cytotoxic T-cell response than immunization with viruses expressing IL-4 or IFN-gamma. Stimulation in vitro of splenocytes obtained from the mice immunized with UV-inactivated HSV-1 McKrae resulted in a T(H)1 pattern of cytokine expression irrespective of the recombinant virus used in the immunization. As observed for the parental virus, both CD4(+) and CD8(+) T cells contributed equally to the production of IL-2 by the splenocytes of mice immunized with any of the three recombinant viruses. However, the pattern of IFN-gamma production by CD4(+) and CD8(+) T cells differed according to the recombinant virus used. After lethal ocular challenge, all immunized mice were protected completely against death and manifestations of eye disease caused by HSV-1, which are typical responses in unimmunized mice. Mice immunized with IL-4-expressing virus cleared the virus from their eyes more rapidly than mice immunized with IL-2- or IFN-gamma-expressing virus. Taken together, our results suggest that, in contrast to IFN-gamma which did not exhibit an adjuvant effect, both IL-4 and IL-2 act as adjuvants in immunization with HSV, with IL-4 showing greater efficacy.  相似文献   

9.
Previous studies demonstrate that aluminium hydroxide adjuvant (alum) produces increased Th1 responses in IL-4-deficient mice compared with wild-type animals, although the continued production of IL-5 by spleen cells from these mice also indicates that Th2 responses are induced. In the present study, we demonstrate that alum can induce Th2-associated IL-4 and IL-5 production in the absence of IL-4 signaling in mice deficient in either IL-4Ralpha or Stat6. The Th2 responses observed could not be due to IL-13 as IL-13 responses are also impaired in IL-4Ralpha- and Stat6-deficient mice. We also detected higher levels of IL-4 in IL-4Ralpha gene-deficient, though not Stat6-deficient, mice compared with their wild-type counterparts. The increased levels of IL-4 could be explained by the IL-4R being unavailable to neutralize this cytokine in IL-4Ralpha-deficient mice. While levels of IL-5 production in IL-4Ralpha- or Stat6-deficient mice were similar to IL-4-deficient and wild-type mice, other type 2-associated responses, which are largely or wholly IL-4 dependent, such as the production of IgG1 or IgE Abs, were either reduced or absent. We conclude that alum adjuvants can induce IL-4 production and Th2 responses independently of IL-4 or IL-13, negating the requirement for an early source of IL-4 in the Th2 response induced by this adjuvant.  相似文献   

10.
IL-12 has been shown to enhance cellular immunity in vitro and in vivo. Recent reports have suggested that combining DNA vaccine approach with immune stimulatory molecules delivered as genes may significantly enhance Ag-specific immune responses in vivo. In particular, IL-12 molecules could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of IL-12 cDNA as an adjuvant for a herpes simplex virus-2 (HSV-2) DNA vaccine in a mouse challenge model. Direct i.m. injection of IL-12 cDNA induced activation of resting immune cells in vivo. Furthermore, coinjection with IL-12 cDNA and gD DNA vaccine inhibited both systemic gD-specific Ab and local Ab levels compared with gD plasmid vaccination alone. In contrast, Th cell proliferative responses and secretion of cytokines (IL-2 and IFN-gamma) and chemokines (RANTES and macrophage inflammatory protein-1alpha) were significantly increased by IL-12 coinjection. However, the production of cytokines (IL-4 and IL-10) and chemokine (MCP-1) was inhibited by IL-12 coinjection. IL-12 coinjection with a gD DNA vaccine showed significantly better protection from lethal HSV-2 challenge compared with gD DNA vaccination alone in both inbred and outbred mice. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vivo CD4+ T cell deletion. Thus, IL-12 cDNA as a DNA vaccine adjuvant drives Ag-specific Th1 type CD4+ T cell responses that result in reduced HSV-2-derived morbidity as well as mortality.  相似文献   

11.
12.
Antibody responses to pneumococcal polysaccharides are decreased in aged mice. Using a system to measure murine antibody responses to the Pnu-Imune vaccine, here we demonstrate that interleukin-10 (IL-10) has an adjuvant effect in enhancing the vaccine response in the aged. IL-10 increased the vaccine responses of B cells from aged mice in vitro only if either T cells or macrophages were also present. The need for T cells or macrophages could be substituted by cytokines such as IL-1 or IL-5, which are normally made by these accessory cells. Thus, IL-10 appeared to act on B cells directly but it worked in conjunction with other cytokines to induce an antigen specific response. In vivo studies showed that IL-10 administration enhanced antibody responses not only to thymic independent antigens but also to thymic-dependent antigens such as sheep erythrocytes. These data suggest that IL-10 may be useful in enhancing vaccine-specific responses in situations in which the host is immunocompromised.  相似文献   

13.
The development of subunit vaccines requires the use of adjuvants that act by stimulating components of the innate immune response. Immune-stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are potential vaccine vectors that induce a wide range of Ag-specific responses in vivo encompassing both humoral and CD4 and CD8 cell-mediated immune responses. ISCOMS are active by both parenteral and mucosal routes, but the basis for their adjuvant properties is unknown. Here we have investigated the ability of ISCOMS to recruit and activate innate immune responses as measured in peritoneal exudate cells. The i.p. injection of ISCOMS induced intense local inflammation, with early recruitment of neutrophils and mast cells followed by macrophages, dendritic cells, and lymphocytes. Many of the recruited cells had phenotypic evidence of activation and secreted a number of inflammatory mediators, including nitric oxide, reactive oxygen intermediates, IL-1, IL-6, IL-12, and IFN-gamma. Of the factors that we investigated further only IL-12 appeared to be essential for the immunogenicity of ISCOMS, as IL-6- and inducible nitric oxide synthase knockout (KO) mice developed normal immune responses to OVA in ISCOMS, whereas these responses were markedly reduced in IL-12KO mice. The recruitment of peritoneal exudate cells following an injection of ISCOMS was impaired in IL-12KO mice, indicating a role for IL-12 in establishing the proinflammatory cascade. Thus, ISCOMS prime Ag-specific immune responses at least in part by activating IL-12-dependent aspects of the innate immune system.  相似文献   

14.
Mice were immunized with either poly(Glu, Arg, Ala) or poly(Glu, Lys, Phe) contained in two different adjuvant preparations, alum (A1K(SO4)2) or complete Freund's adjuvant (CFA), and in vitro antigen-driven proliferative responses of lymph node cells were assayed 4-16 days later. After immunization with antigens on alum, endogenous interleukin 1 (IL-1) as well as interleukin 4 (IL-4) production was required for the proliferation of the elicited T cells as inclusion of either polyclonal goat anti-mouse IL-1 alpha or monoclonal anti-mouse IL-4 (11B11) in the cultures inhibited proliferative responses to antigen. In contrast, proliferative responses of cells elicited by antigen in CFA were not inhibited by either anti-IL-1 or anti-IL-4. Monoclonal antimouse CD4 (GK 1.5) inhibited proliferative responses regardless of which adjuvant was used to elicit antigen-reactive cells. These data indicated that phenotypically different subpopulations of CD4+ cells were elicited by the same antigen administered in different adjuvant preparations, Th2-like cells after immunization with polymers on alum and Th1-like cells after immunization with antigens in CFA. An examination of the isotypes of polymer-specific antibodies present in the sera of immunized mice also supported this conclusion.  相似文献   

15.
16.
The TLR5 agonist flagellin induces innate and adaptive immune responses in a MyD88-dependent manner and is under development as a vaccine adjuvant. In vitro studies indicate that, compared with other bacteria-derived adjuvants, flagellin is a very potent activator of proinflammatory gene expression and cytokine production from cells of nonhemopoietic origin. However, the role of nonhemopoietic cells in promoting flagellin-induced immune responses in vivo remains unclear. To investigate the relative contributions of the nonhemopoietic (radioresistant) and the hemopoietic (radiosensitive) compartments, we measured both innate and adaptive immune responses of flagellin-treated MyD88 radiation bone marrow chimeras. We observed that radiosensitive and radioresistant cells played distinct roles in the innate response to flagellin, with the radiosensitive cells producing the majority of the TNF-alpha, IL-12, and IL-6 cytokines and the radioresistant cells most of the KC, IP-10, and MCP-1 cytokines. Direct activation of either compartment alone by flagellin initiated dendritic cell costimulatory molecule up-regulation and induced a significant humoral immune response to the protein itself as well as to coinjected OVA. However, robust humoral responses were only observed when MyD88 was present in both cell compartments. Further studies revealed that hemopoietic and nonhemopoietic expression of the cytokines TNF-alpha and IL-6, but not IL-1, played an important role in promoting flagellin-induced Ab responses. Thus, in vivo both radioresistant and hemopoietic cells play key nonredundant roles in mediating innate and adaptive immune responses to flagellin.  相似文献   

17.
Recent reports indicate that murine CD4+ Th1-type cloned T cells are insensitive to IL-1 because specific IL-1R are not detected on these cells and IL-1 does not modulate proliferative responses. However, we have determined that Th1 clones can respond to IL-1, because they function synergistically with IL-2 to induce granulocyte-macrophage-CSF secretion. This response to IL-1 plus IL-2 could be induced by IL-1 alpha or IL-1 beta and by membrane-bound IL-1 on macrophages. However, IL-1R could not be detected, and Th1 cells did not respond to IL-4 in the presence or absence of IL-1, as measured by either proliferation or granulocyte-macrophage-CSF production. Therefore, IL-1 functioned as a cofactor in Th1 cells stimulated with IL-2, but not with IL-4. A possible mechanism whereby IL-1 activates Th1 cells is discussed.  相似文献   

18.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

19.
Challenge with peptide Ag in the absence of adjuvant results in tolerance of CD8 T cells specific for the Ag. In contrast, administration of IL-12 along with peptide results in massive clonal expansion, development of effector function, and establishment of a long-lived memory population. Using adoptive transfer of TCR-transgenic CD8 T cells, this effect of IL-12 is shown to be independent of CD4 T cells and to require costimulation provided by CD28 and possibly LFA-1. IL-12 supports responses when IL-12Rbeta1-deficient mice are used as recipients for the adoptively transferred CD8 T cells, demonstrating that the IL-12 is acting directly on the T cells rather than on host APC. These results provide strong support for a three-signal model for in vivo activation of naive CD8 T cells by peptide Ag, in which the presence or absence of the third signal determines whether tolerance or activation occurs. In contrast, memory CD8 T cells are effectively activated by peptide Ag in the absence of IL-12 or adjuvant.  相似文献   

20.
Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined. By immunizing C57Bl/6 controls IL-4(-/-) mice and IFNγ(-/-) mice and performing passive serum transfer experiments, it was observed that sera containing PA-specific IgG1, IgG2b and IgG2c neutralized toxin in vitro and conferred protection in vivo. Sera containing IgG2b and IgG2c neutralized toxin in vitro but were not sufficient for protection in vivo. Sera containing IgG1 and IgG2b neutralized toxin in vitro and conferred protection in vivo. IgG1 therefore emerged as a good correlate of protection. Next, C57Bl/6 mice were immunized with PA alone or PA plus a Th2-skewing α-GC derivative known as OCH. Neutralizing PA-specific IgG1 responses were modestly enhanced by OCH in C57Bl/6 mice. Conversely, IgG2b and IgG2c were considerably enhanced in PA/OCH-immunized IL-4(-/-) mice but did not confer protection. Finally, bone marrow chimeras were generated such that NKT cells were unable to express IL-4 or IFNγ. NKT-derived IL-4 was required for OCH-enhanced primary IgG1 responses but not recall responses. NKT-derived IL-4 and IFNγ also influenced primary and recall IgG2b and IgG2c titers. These data suggest targeted skewing of the Th2 response by α-GC derivatives can be exploited to optimize anthrax vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号