首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the supposed vertical diel migration and the accompanying physiology of Beggiatoa bacteria from hypersaline microbial mats. We combined microsensor, stable-isotope, and molecular techniques to clarify the phylogeny and physiology of the most dominant species inhabiting mats of the natural hypersaline Lake Chiprana, Spain. The most dominant morphotype had a filament diameter of 6 to 8 microm and a length varying from 1 to >10 mm. Phylogenetic analysis by 16S rRNA gene comparison revealed that this type appeared to be most closely related (91% sequence identity) to the narrow (4-microm diameter) nonvacuolated marine strain MS-81-6. Stable-isotope analysis showed that the Lake Chiprana species could store nitrate intracellularly to 40 mM. The presence of large intracellular vacuoles was confirmed by fluorescein isothiocyanate staining and subsequent confocal microscopy. In illuminated mats, their highest abundance was found at a depth of 8 mm, where oxygen and sulfide co-occurred. However, in the dark, the highest Beggiatoa densities occurred at 7 mm, and the whole population was present in the anoxic zone of the mat. Our findings suggest that hypersaline Beggiatoa bacteria oxidize sulfide with oxygen under light conditions and with internally stored nitrate under dark conditions. It was concluded that nitrate storage by Beggiatoa is an optimal strategy to both occupy the suboxic zones in sulfidic sediments and survive the dark periods in phototrophic mats.  相似文献   

2.
A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3- as an alternative electron acceptor. The gradient tubes contained different NO3- concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3- were determined with microsensors. The more NO3- that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3- to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3- Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3- was added. These thick mats spatially separated O2 and sulfide but not NO3- and sulfide, and therefore NO3- must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3- -exposed mats compared to the fluxes for controls without NO3-. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3- as the electron acceptor.  相似文献   

3.
In order to investigate the environmental requirements of the filamentous sulfur bacteria Thioploca spp., we tested the chemotactic responses of these sedimentary microorganisms to changes in oxygen, nitrate, and sulfide concentrations. A sediment core with a Thioploca mat, retrieved from the oxygen-minimum zone on the Chilean shelf, was incubated in a recirculating flume. The addition of 25 (mu)mol of nitrate per liter to the seawater flow induced the ascent of the Thioploca trichomes (length, up to 70 mm) in their mostly vertically oriented gelatinous sheaths. The upper ends of the filaments penetrated the sediment surface and protruded 1 to 3 mm into the flowing water before they bent downstream. By penetrating the diffusive boundary layer, Thioploca spp. facilitate efficient nitrate uptake in exposed trichome sections that are up to 30 mm long. The cumulative length of exposed filaments per square centimeter of sediment surface was up to 92 cm, with a total exposed trichome surface area of 1 cm(sup2). The positive reaction to nitrate overruled a negative response to oxygen, indicating that nitrate is the principal electron acceptor used by Thioploca spp. in the anoxic environment; 10-fold increases in nitrate fluxes after massive emergence of filaments strengthened this hypothesis. A positive chemotactic response to sulfide concentrations of less than 100 (mu)mol liter(sup-1) counteracted the attraction to nitrate and, along with phobic reactions to oxygen and higher sulfide concentrations, controlled the vertical movement of the trichomes. We suggest that the success of Thioploca spp. on the Chilean shelf is based on the ability of these organisms to shuttle between the nitrate-rich boundary layer and the sulfidic sediment strata.  相似文献   

4.
A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time of cells was 15.7 +/- 1.3 h (mean +/- SD) at room temperature. Filaments grew up to an average length of 1.7 +/- 0.2 mm, but filaments of up to approximately 6 mm were also present. First breakages of filaments occurred approximately 19 h after inoculation, and time-lapse movies illustrated that a parent filament could break into several daughter filaments within a few hours. In >20% of the cases, filament breakage occurred at the tip of a former loop. As filament breakage is accomplished by the presence of sacrificial cells, loop formation and the presence of sacrificial cells must coincide. We hypothesize that sacrificial cells enhance the chance of loop formation by interrupting the communication between two parts of one filament. With communication interrupted, these two parts of one filament can randomly move toward each other forming the tip of a loop at the sacrificial cell.  相似文献   

5.
Novel red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mats as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.  相似文献   

6.
Characterization of gliding motility in Flexibacter polymorphus   总被引:3,自引:0,他引:3  
Motility of the marine gliding bacterium Flexibacter polymorphus was studied by using microcinematographic techniques. Following adhesion to a glass surface, multicellular filaments and individual cells usually began to glide within a few seconds at a speed of approximately 12 micron per second (at 23 degrees C). Adhesion to the glass surface was evidently mediated by multitudes of extremely fine extracellular fibrils. Gliding velocity was independent of filament length but directly related to electron-transport activity and substratum temperature in the range 3-35 degrees C. The rate of gliding was inversely related to medium viscosity, suggesting that the locomotor apparatus functions at constant torque. Forward motion was occasionally interrupted by direction reversals, somersaults (observed primarily in single cells of short filaments), or spinning of filaments tethered by one pole. The frequency of direction reversal was found to be an inverse function of filament length. Translational motility was invariably accompanied by sinistral revolution about the longitudinal axis of a filament. The sense and pitch of revolution were constant among filaments of different length. Polystyrene microspheres or India ink particles adsorbed to gliding cells were actively displaced in either direction, their movement tracing either a regular zigzag or helical path along the filament surface. Because microspheres were also observed to move on nonmotile filaments, particle translocation was evidently not obligatorily linked to gliding locomotion. Multiple particles adsorbed to a single filament often moved independently. The data are consistent with a motility mechanism involving limited motion in numerous mechanically independent (yet functionally coordinated) domains on the cell surface.  相似文献   

7.
Filamentous sulphide-oxidizing Beggiatoa spp. often occur in large numbers in the coastal seabed without forming visible mats on the sediment surface. We studied the diversity, population structure and the nitrate-storing capability of such bacteria in the Danish Limfjorden and the German Wadden Sea. Their distribution was compared to the vertical gradients of O2, NO3- and H2S as measured by microsensors. The main Beggiatoa spp. populations occurred in a 0.5-3 cm thick intermediate zone, below the depth of oxygen and nitrate penetration but above the zone of free sulphide. The Beggiatoa spp. filaments were found to store nitrate, presumably in liquid vacuoles up to a concentration of 370 mM NO3-, similar to the related large marine sulphur bacteria, Thioploca and Thiomargarita. The observations indicate that marine Beggiatoa spp. can live anaerobically and conserve energy by coupling sulphide oxidation with the reduction of nitrate to dinitrogen and/or ammonia. Calculations of the diffusive nitrate flux and the potential sulphide oxidation by Beggiatoa spp. show that the bacteria may play a critical role for the sulphur cycling and the nitrogen balance in these coastal environments. 16S rDNA sequence analysis shows a large diversity of these uncultured, nitrate-storing Beggiatoa spp. Smaller (9-17 micro m wide) and larger (33-40 micro m wide) Beggiatoa spp. represent novel phylogenetic clusters distinct from previously sequenced, large marine Beggiatoa spp. and Thioploca spp. Fluorescence in situ hybridization (FISH) of the natural Beggiatoa spp. populations showed that filament width is a conservative character of each phylogenetic species but a given filament width may represent multiple phylogenetic species in a mixed population.  相似文献   

8.
Massive accumulations of very large Beggiatoa spp. are found at a Monterey Canyon cold seep and at Guaymas Basin hydrothermal vents. Both environments are characterized by high sediment concentrations of soluble sulfide and low levels of dissolved oxygen in surrounding waters. These filamentous, sulfur-oxidizing bacteria accumulate nitrate intracellularly at concentrations of 130 to 160 mM, 3,000- to 4,000-fold higher than ambient levels. Average filament widths range from 24 to 122 (mu)m, and individual cells of all widths possess a central vacuole. These findings plus recent parallel discoveries for Thioploca spp. (H. Fossing, V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa, Nature (London) 374:713-715, 1995) suggest that nitrate accumulation may be a universal property of vacuolate, filamentous sulfur bacteria. Ribulose bisphosphate carboxylase-oxygenase and 2-oxoglutarate dehydrogenase activities in the Beggiatoa sp. from Monterey Canyon suggest in situ autotrophic growth of these bacteria. Nitrate reductase activity is much higher in the Monterey Beggiatoa sp. than in narrow, laboratory-grown strains of Beggiatoa spp., and the activity is found primarily in the membrane fraction, suggesting that the vacuolate Beggiatoa sp. can reduce nitrate coupled to electron flow through an electron transport system. Nitrate-concentrating and respiration potentials of these chemolithoautotrophs suggest that the Beggiatoa spp. described here are an important link between the sulfur, nitrogen, and carbon cycles at the Monterey Canyon seeps and the Guaymas Basin hydrothermal vents where they are found.  相似文献   

9.
Rhodamine–phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another. Filament crossover or alignment was equally probable at ∼40° contact angle. Filaments often underwent significant bending during collision and analysis of filament shape indicated an energy requirement of ∼13 kBT. Experiments were performed over a wide range of HMM surface density and actin filament bulk concentration. Actin filament gliding speed and path persistence plateaued above a critical HMM surface density, and at high (micromolar) actin filament concentrations, filament motion became dramatically aligned in a common direction. Spatiotemporal features of alignment behavior were determined by correlation analysis, supported by simulations. The thermal drift of individual filament tracks was suppressed as the population became more oriented. Spatial correlation analysis revealed that long-range alignment was due to incremental recruitment rather than fusion of locally ordered seed domains. The global alignment of filament movement, described by an “order parameter,” peaked at optimal actin concentrations and myosin surface densities, in contrast to previous predictions of a critical phase transition. Either hydrodynamic coupling or exchange of filaments between the surface bound and adjacent bulk phase layers might degrade order at high actin filament concentration, and high HMM surface densities might decrease alignment probability during collisions. Our results are compatible with generation of long-range order from mechanical interaction between individual actin filaments. Furthermore, we show that randomly oriented myosin motors align relatively short, submicrometer actin filaments into motile surface domains that extend over many tens of micrometers and these patterns persist for several minutes.  相似文献   

10.
Rhodamine–phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another. Filament crossover or alignment was equally probable at ∼40° contact angle. Filaments often underwent significant bending during collision and analysis of filament shape indicated an energy requirement of ∼13 kBT. Experiments were performed over a wide range of HMM surface density and actin filament bulk concentration. Actin filament gliding speed and path persistence plateaued above a critical HMM surface density, and at high (micromolar) actin filament concentrations, filament motion became dramatically aligned in a common direction. Spatiotemporal features of alignment behavior were determined by correlation analysis, supported by simulations. The thermal drift of individual filament tracks was suppressed as the population became more oriented. Spatial correlation analysis revealed that long-range alignment was due to incremental recruitment rather than fusion of locally ordered seed domains. The global alignment of filament movement, described by an “order parameter,” peaked at optimal actin concentrations and myosin surface densities, in contrast to previous predictions of a critical phase transition. Either hydrodynamic coupling or exchange of filaments between the surface bound and adjacent bulk phase layers might degrade order at high actin filament concentration, and high HMM surface densities might decrease alignment probability during collisions. Our results are compatible with generation of long-range order from mechanical interaction between individual actin filaments. Furthermore, we show that randomly oriented myosin motors align relatively short, submicrometer actin filaments into motile surface domains that extend over many tens of micrometers and these patterns persist for several minutes.  相似文献   

11.
In this study, members of a specific group of thin (6-14 μm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.  相似文献   

12.
The bulk alignment of actin filament sliding movement, powered by randomly oriented myosin molecules, has been observed and studied using an in vitro motility assay. The well established, actin filament gliding assay is a minimal experimental system for studying actomyosin motility. Here, we show that when the assay is performed at densities of actin filaments approaching those found in living cells, filament gliding takes up a preferred orientation. The oriented patterns of movement that we have observed extend over a length scale of 10–100 μm, similar to the size of a mammalian cell. We studied the process of filament alignment and found that it depends critically upon filament length and density. We developed a simple quantitative measure of filament sliding orientation and this enabled us to follow the time course of alignment and the formation and disappearance of oriented domains. Domains of oriented filaments formed spontaneously and were separated by distinct boundaries. The pattern of the domain structures changed on the time scale of several seconds and the collision of neighboring domains led to emergence of new patterns. Our results indicate that actin filament crowding may play an important role in structuring the leading edge of migrating cells. Filament alignment due to near-neighbor mechanical interactions can propagate over a length scale of several microns; much greater than the size of individual filaments and analogous to a log drive. Self-alignment of actin filaments may make an important contribution to cell polarity and provide a mechanism by which cell migration direction responds to chemical cues.  相似文献   

13.
The aggregation properties of column-purified rabbit skeletal myosin at pH 7.0 were investigated as functions of ionic strength, protein concentration, and time. Filaments prepared by dialysis exhibited the same average length and population distribution at 0.10 and 0.15 M KCl at protein concentrations greater than 0.10 mg/ml; similar results were obtained at .0.20 M KCl, although average filament length was approximately 0.5 micrometer shorter. Once formed, these length distributions remained virtually unchanged over an 8-d period. At and below 0.10 mg/ml, average filament length decreased as a function of protein concentration; filaments prepared from an initial concentration of 0.02 mg/ml were half the length of those prepared at 0.2 mg/ml. Filaments prepared by dilution exhibited a sharp increase in average length as the time-course increased up to 40 s, then altered only slightly over a further period of 4 min. Addition of C-protein in a molar ratio of 1-3.3 myosin molecules affected most of these results. Average filament length was affected neither by ionic strength nor by initial protein concentration down to 0.04 mg/ml or over an 8-d period. Filaments formed by dilution in the presence of C-protein exhibited a constant average length and hypersharp length distribution over variable time courses up to 7 min. It is possible that C-protein acts to stabilize the antiparallel intermediate during filamentogenesis, and may also affect subunit addition to this nucleus.  相似文献   

14.
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability.  相似文献   

15.
Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease.  相似文献   

16.
《Biophysical journal》2022,121(10):1813-1822
Cytoskeletal filaments, such as microtubules and actin filaments, play important roles in the mechanical integrity of cells and the ability of cells to respond to their environment. Measuring the mechanical properties of cytoskeletal structures is crucial for gaining insight into intracellular mechanical stresses and their role in regulating cellular processes. One of the ways to characterize these mechanical properties is by measuring their persistence length, the average length over which filaments stay straight. There are several approaches in the literature for measuring filament deformations, such as Fourier analysis of images obtained using fluorescence microscopy. Here, we show how curvature distributions can be used as an alternative tool to quantify biofilament deformations, and investigate how the apparent stiffness of filaments depends on the resolution and noise of the imaging system. We present analytical calculations of the scaling curvature distributions as a function of filament discretization, and test our predictions by comparing Monte Carlo simulations with results from existing techniques. We also apply our approach to microtubules and actin filaments obtained from in vitro gliding assay experiments with high densities of nonfunctional motors, and calculate the persistence length of these filaments. The presented curvature analysis is significantly more accurate compared with existing approaches for small data sets, and can be readily applied to both in vitro and in vivo filament data through the use of the open-source codes we provide.  相似文献   

17.
Native thick filaments isolated from freshly prepared rabbit psoas muscle were found to be resistant to pressure-induced dissociation. With increasing pressure application and release, a bimodal distribution of filament lengths was observed. The shorter filament length is associated with filament breakage at the center of the bare zone, while the longer length is associated with relatively intact filaments. Intact filaments and filament halves decrease in length by no more than 20% after exposure to and release of 14,000 psi. Bimodal distributions were not observed in equivalent experiments performed on filaments isolated from muscle glycerinated and stored at -20 degrees C for 6 months. Instead, filament dissociation proceeds linearly as a function of increasing pressure. Filaments prepared from muscle glycerinated and stored for 2 and 4 months exhibited pressure-induced behavior intermediate between the filaments prepared from fresh muscle and filaments prepared from muscle stored for 6 months. Since there appears to be no difference in the protein profiles of the various muscle samples, it is possible that stabilization of the native thick filament against hydrostatic pressure arises from trapped ions that are leached out over time.  相似文献   

18.
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability.  相似文献   

19.
We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency and location along filaments. The emergent behavior of mechanically heterogeneous filaments, particularly under confinement, emphasizes that severing in cells is likely to be influenced by multiple physical and chemical factors.  相似文献   

20.
The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by several electron transport inhibitors but not by dibromothymoquinone, indicating that the electrons released from sulfide oxidation were shuttled to oxygen without the involvement of ubiquinones. Intracellular sulfur stored by B. alba was not oxidized to sulfate or converted to an external soluble form under aerobic conditions. On the other hand, sulfur stored by filaments of Thiothrix nivea was oxidized to extracellular soluble oxidation products, including sulfate. Sulfur stored by filaments of B. alba, however, was reduced to sulfide under short-term anoxic conditions. This anaerobic reduction of sulfur was linked to the endogenous oxidation of stored carbon and to hydrogen oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号