首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Water-soluble quinoprotein glucose dehydrogease (PQQGDH-B) is a dimeric enzyme whose application for glucose sensing is the focus of much attention. We attempted to increase the thermal stability of PQQGDH-B by introducing a disulfide bond at the dimer interface. The Ser residue at position 415 was selected for substitution with Cys, as structural information revealed that its side chains face each other at the dimer interface of PQQGDH-B. PQQGDH-B with Ser415Cys showed 30-fold greater thermal stability at 55°C than did the wild-type enzyme without any decrease in catalytic activity. After incubation at 70°C for 10 min, Ser415Cys retained 90% of the GDH activity of the wild-type enzyme. Disulfide bond formation between the mutant subunits was confirmed by analyses with sodium dodecylsulfate-polyacrylamide gel electrophoresis in the presence and absence of reductants. Our results indicate that the introduction of one Cys residue in each monomer of PQQGDH-B resulted in formation of a disulfide bond at the dimer interface and thus achieved a large increase in the thermal stability of the enzyme.  相似文献   

2.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

3.
Several variants of Saccharomyces cerevisiae triosephosphate isomerase (yTIM) were studied to determine how mutations of conserved and non-conserved Cys residues affect the enzyme. Wild-type yTIM has two buried free cysteines: Cys 41 (non-conserved) and the invariant Cys 126. Single-site mutants, containing substitutions of these cysteines with Ala, Val, or Ser (the three most conservative changes for a buried Cys, according to substitution matrices), were examined for stability and enzymatic activity. Neither of the Cys residues was found to be essential for enzyme catalysis. Determination of the global stability of the mutants indicated that, regardless of which Cys was substituted, individual Cys→Ala and Cys→Val mutations, as well as the C41S substitution, all decrease the unfolding free energy of the dimeric protein by less than 23 kJ mol(-1) (at 37 °C, pH 7.4), as compared to the wild-type enzyme. In contrast, a substantially larger destabilization (37 kJ mol(-1)) was found in the C126S mutant. These results suggest that, with the exception of C126S, all of these mutations can be regarded as neutral (i.e., mutations that do not impair the reproductive success of the organism). Accordingly, Cys 126 has remained invariant across evolution because its neutral substitutions by Ala or Val would require a highly unlikely, concerted double mutation at any of the Cys codons. Furthermore, detrimental effects to a cell expressing the C126S TIM mutant more likely arise from the high unfolding rate of this enzyme.  相似文献   

4.
Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together.  相似文献   

5.
In triosephosphate isomerase, Cys126 is a conserved residue located close to the catalytic glutamate, Glu165. Although it has been mentioned that Cys126 and other nearby residues are required to maintain the active site geometry optimal for catalysis, no evidence supporting this idea has been reported to date. In this work, we studied the catalytic and stability properties of mutants C126A and C126S of Saccharomyces cerevisiae TIM (wtTIM). None of these amino acid replacements induced significant changes in the folding of wtTIM, as indicated by spectroscopic studies. C126S and C126A have K(M) and k(cat) values that are concomitantly reduced by only 4-fold and 1.5-fold, respectively, compared to those of wtTIM; in either case, however, the catalytic efficiency (k(cat)/K(M)) of the enzyme is barely affected. The affinity of mutated TIMs for the competitive inhibitor 2-phosphoglycolate augmented also slightly. In contrast, greater susceptibility to thermal denaturation resulted from mutation of Cys126, especially when it was changed to Ser. By using values of the rate constants for unfolding and refolding, we estimated that, at 25 degrees C, C126A and C126S are less stable than wtTIM by about 5.0 and 9.0 kcal mol(-)(1), respectively. Moreover, either of these mutations slows down the folding rate by a factor of 10 and decreases the recovery of the active enzyme after thermal unfolding. Thus, Cys126 is required for proper stability and efficient folding of TIM rather than for enzymatic catalysis.  相似文献   

6.
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the K d value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.  相似文献   

7.
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight mutants were successfully generated and purified, five of which (H142T, M489V, M542C, M542I, and M542V) were found to be inactive under various assay conditions. The H142K mutant was moderately altered in all kinetic parameters to a similar extent. In addition, the mutant was more thermo-labile than wild type enzyme. The E143A mutant increased the Km value more than 20-fold while other parameters were not significantly changed. All mutations carried out on residue M542 inactivated the enzyme. Though showing a single band on SDS-PAGE, the M542C mutant lost its native tertiary structure and was aggregated. Except M542C, each of the other mutants showed a secondary structure similar to that of wild type enzyme. Although all the inactive mutants were able to bind FAD, the mutants M489V and M542C showed a very low affinity for FAD. None of the active mutants constructed was strongly resistant to three tested herbicides. Taken together, the results suggest that the residues of H142, E143, M489, and M542 are essential for catalytic activity. Furthermore, it seems that H142 residue is involved in stabilizing the dimer interaction, while E143 residue may be involved in binding with substrate pyruvate. The data from the site-directed mutagenesis imply that the constructed homology model of tobacco AHAS is realistic.  相似文献   

8.
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.  相似文献   

9.
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.  相似文献   

10.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

11.
The selectivity filter of most K+ channels contains a highly conserved Thr residue that uniquely forms the S4 binding site for K+ by dual coordination with the backbone carbonyl oxygen and side chain hydroxyl of the same residue. This study examines the effect of mutations of Thr75 in the S4 site of theKcsA K+ channel on the cation dependence of the thermal stability of the tetramer, a phenomenon that reflects the structural role of cations in the filter. Conservative mutations of Thr75 destabilize the tetramer and alter its temperature dependence. Replacement of Thr with Ala or Cys lowers the apparent affinity ofK+, Rb+, and Cs+ for tetramer stabilization by factors ranging from 4- to 14-fold. These same mutations lower the apparent affinity of Ba2+ by approximately 10(3)- or approximately 10(4)-fold for Ala and Cys substitution, respectively,consistent with the known preference of the S4 site for Ba2+. In contrast, substitution of Ala or Cys at T75 anomalously enhances the ability of Na+ to stabilize the tetramer, suggesting that the native Thr residue at S4 is important for ultrahigh K+/Na+ selectivity of K+ channel pores. Elevated temperature orCu2+ cation catalyzes formation of covalent dimers of the T75C mutant of KcsA via formation of disulfide bonds between Cys residues of adjacent subunits. Thiophilic cations such as Hg2+ and Ag+ specifically protect the T75C tetramer against heat-induced dimer formation, demonstrating the contribution of cation interactions to tetramer stability in a channel with a non-native S4 site engineered to bind foreign cations.  相似文献   

12.
Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.  相似文献   

13.
Lacombe T  Gabriel JM 《FEBS letters》2002,531(3):469-474
The human isopeptidase T (isoT) is a zinc-binding deubiquitinating enzyme involved in the disassembly of free K48-linked polyubiquitin chains into ubiquitin monomers. The catalytic site of this enzyme is thought to be composed of Cys335, Asp435, His786 and His795. These four residues were site-directed mutagenized. None of the mutants were able to cleave a peptide-linked ubiquitin dimer. Similarly, C335S, D435N and H795N mutants had virtually no activity against a K48-linked isopeptide ubiquitin dimer, which is an isoT-specific substrate that mimics the K48-linked polyubiquitin chains. On the other hand, the H786N mutant retained a partial activity toward the K48-linked substrate, suggesting that the His786 residue might not be part of the catalytic site. None of the mutations significantly affected the capacity of isoT to bind ubiquitin and zinc. Thus, the catalytic site of UBPs could resemble that of other cysteine proteases, which contain one Cys, one Asp and one His.  相似文献   

14.
The citric acid cycle enzyme, malate dehydrogenase (MDH), is a dimer of identical subunits. In the crystal structures of 2 prokaryotic and 2 eukaryotic forms, the subunit interface is conformationally homologous. To determine whether or not the quaternary structure of MDH is linked to the catalytic activity, mutant forms of the enzyme from Escherichia coli have been constructed. Utilizing the high-resolution structure of E. coli MDH, the dimer interface was analyzed critically for side chains that were spatially constricted and needed for electrostatic interactions. Two such residues were found, D45 and S226. At their nearest point in the homodimer, they are in different subunits, hydrogen bond across the interface, and do not interact with any catalytic residues. Each residue was mutated to a tyrosine, which should disrupt the interface because of its large size. All mutants were cloned and purified to homogeneity from an mdh- E. coli strain (BHB111). Gel filtration of the mutants show that D45Y and D45Y/S226Y are both monomers, whereas the S226Y mutant remains a dimer. The monomeric D45Y and D45Y/S226Y mutants have 14,000- and 17,500-fold less specific activity, respectively, than the native enzyme. The dimeric S226Y has only 1.4-fold less specific activity. All forms crystallized, indicating they were not random coils. Data have been collected to 2.8 A resolution for the D45Y mutant. The mutant is not isomorphous with the native protein and work is underway to solve the structure by molecular replacement.  相似文献   

15.
Brokx SJ  Talbot J  Georges F  Waygood EB 《Biochemistry》2000,39(13):3624-3635
Enzyme I mutants of the Salmonella typhimurium phosphoenolpyruvate:sugar phosphotransferase system (PTS), which show in vitro intragenic complementation, have been identified as Arg126Cys (strain SB1690 ptsI34), Gly356Ser (strain SB1681 ptsI16), and Arg375Cys (strain SB1476 ptsI17). The mutation Arg126Cys is in the N-terminal HPr-binding domain, and complements Gly356Ser and Arg375Cys enzyme I mutations located in the C-terminal phosphoenolpyruvate(PEP)-binding domain. Complementation results in the formation of unstable heterodimers. None of the mutations alters the K(m) for HPr, which is phosphorylated by enzyme I. Arg126 is a conserved residue; the Arg126Cys mutation gives a V(max) of 0.04% wild-type, establishing a role in phosphoryl transfer. The Gly356Ser and Arg375Cys mutations reduce enzyme I V(max) to 4 and 2%, respectively, and for both, the PEP K(m) is increased from 0.1 to 3 mM. It is concluded that this activity was from the monomer, rather than the dimer normally found in assays of wild-type. In the presence of Arg126Cys enzyme, V(max) for Gly356Ser and Arg375Cys enzymes I increased 6- and 2-fold, respectively; the K(m) for PEP decreased to <10 microM, but the K(m) became dependent upon the stability of the heterodimer in the assay. Gly356 is conserved in enzyme I and pyruvate phosphate dikinase, which is a homologue of enzyme I, and this residue is part of a conserved sequence in the subunit interaction site. Gly356Ser mutation impairs enzyme I dimerization. The mutation Arg375Cys also impairs dimerization, but the equivalent residue in pyruvate phosphate dikinase is not associated with the subunit interaction site. A 37 000 Da, C-terminal domain of enzyme I has been expressed and purified; it dimerizes and complements Gly356Ser and Arg375Cys enzymes I proving that the association/dissociation properties of enzyme I are a function of the C-terminal domain.  相似文献   

16.
Chen H  Zhang G  Zhang Y  Dong Y  Yang K 《Biochemistry》2000,39(40):12140-12148
Prochymosin (chymosin) contains three disulfide bonds: Cys45-Cys50, Cys206-Cys210, and Cys250-Cys283. We have demonstrated that Cys250-Cys283 is indispensable for correct refolding of prochymosin, whereas Cys45-Cys50 is dispensable but has some contribution to the stability and substrate specificity of the enzyme. Here, we report the results about the functions of Cys206-Cys210 by site-directed mutagenesis studies. In a glutathione redox system C206A/C210A mutant exhibited oxidative refolding kinetics and efficiency ( approximately 40% reactivation) similar to those of the wild-type prochymosin, indicating that Cys206-Cys210 is also dispensable for refolding. However, C206S/C210S and single-site mutants (C210A, C210S, and C206A) showed only about 3 and 0-0.4% reactivation, respectively. This is quite different from the Cys45-Cys50 deficient mutants (C45A, C50A, C45A/C50A, C45D, C50S, C45D/C50S, C45A/C50S), which have comparable refolding efficiencies, implying that the substituents at position 206 and 210 play more important role in determining correct refolding than those at position 45 and 50. Urea-induced denaturation and fluorescence quenching studies indicated that the prochymosin mutants C206A/C210A and C206S/C210S were 2.1 and 4.8 kJ/mol less stable than prochymosin and some tryptophan residue in the mutated molecules was less exposed. However, the wild-type and mutant prochymosins shared similar far-UV CD and fluorescence emission spectra and similar specific potential activity, suggesting that the overall conformation was maintained after mutation. Activity assay and kinetic analysis revealed that mutation did not change the specific milk-clotting activity significantly but resulted in an increase in K(m) and k(cat) toward a hexapeptide substrate. On the basis of the above-mentioned perturbance of tryptophanyl microenvironment and the three-dimensional structure of chymosin, we proposed that deletion of Cys206-Cys210 may induce a propagated conformational change, resulting in a perturbance of the local conformation around active-site cleft and in turn, an alteration of the substrate specificity.  相似文献   

17.
In homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM), cysteine 14 of each the two subunits forms part of the dimer interface. This residue is central for the catalysis and stability of TbTIM. Cys14 was changed to the other 19 amino acids to determine the characteristics that the residue must have to yield catalytically competent stable enzymes. C14A, C14S, C14P, C14T, and C14V TbTIMs were essentially wild type in activity and stability. Mutants with Asn, Arg, and Gly had low activities and stabilities. The other mutants had less than 1% of the activity of TbTIM. One of the latter enzymes (C14F) was purified to homogeneity. Size exclusion chromatography and equilibrium sedimentation studies showed that C14F TbTIM is a monomer, with a k(cat) approximately 1000 times lower and a K(m) approximately 6 times higher than those of TbTIM. In C14F TbTIM, the ratio of the elimination (methylglyoxal and phosphate formation) to isomerization reactions was higher than in TbTIM. Its secondary structure was very similar to that of TbTIM; however, the quantum yield of its aromatic residues was lower. The analysis of the data with the 19 mutants showed that to yield enzymes similar to the wild type, the residue must have low polarity and a van der Waals volume between 65 and 110 A(3). The results with C14F TbTIM illustrate that the secondary structure of TbTIM can be formed in the absence of intersubunit contacts, and that it has sufficient tertiary structure to support catalysis.  相似文献   

18.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Yeast (Saccharomyces cerevisiae) pyrophosphatase (Y-PPase) is a tight homodimer with two active sites separated in space from the subunit interface. The present study addresses the effects of mutation of four amino acid residues at the subunit interface on dimer stability and catalytic activity. The W52S variant of Y-PPase is monomeric up to an enzyme concentration of 300 microm, whereas R51S, H87T, and W279S variants produce monomer only in dilute solutions at pH > or = 8.5, as revealed by sedimentation, gel electrophoresis, and activity measurements. Monomeric Y-PPase is considerably more sensitive to the SH reagents N-ethylmaleimide and p-hydroxymercurobenzosulfonate than the dimeric protein. Additionally, replacement of a single cysteine residue (Cys(83)), which is not part of the subunit interface or active site, with Ser resulted in insensitivity of the monomer to SH reagents and stabilization against spontaneous inactivation during storage. Active site ligands (Mg(2+) cofactor, P(i) product, and the PP(i) analog imidodiphosphate) stabilized the W279S dimer versus monomer predominantly by decreasing the rate of dimer to monomer conversion. The monomeric protein exhibited a markedly increased (5-9-fold) Michaelis constant, whereas k(cat) remained virtually unchanged, compared with dimer. These results indicate that dimerization of Y-PPase improves its substrate binding performance and, conversely, that active site adjustment through cofactor, product, or substrate binding strengthens intersubunit interactions. Both effects appear to be mediated by a conformational change involving the C-terminal segment that generally shields the Cys(83) residue in the dimer.  相似文献   

20.
Cys21 is an invariant residue in muscle acylphosphatases, but is absent in the erythrocyte isozymes. To assess the importance of this residue in the muscle isozymes for catalytic, structural, and stability properties, two gene mutants have been prepared by oligonucleotide-directed mutagenesis and expressed inEscherichia coli cells; in these mutants, the codon for Cys21 was replaced by those for Ser and Ala, respectively. The two mutant enzymes, purified by immunoaffinity chromatography, showed kinetic and structural properties similar to those of the wild-type recombinant enzyme; however, the specific activity of the two mutants, especially that of the C21A mutant, was lower. The urea and thermal stabilities of the mutant enzymes were reduced with respect to those of the wild-type form, contrary to the susceptibility to inactivation by mercuric ions. The reported data support the possibility that Cys21 is involved in the stabilization of the enzyme active-site conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号