首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy.  相似文献   

2.
As an alternative approach to conventional allergen-specific immunotherapy, transgenic rice seed expressing a major house dust mite (HDM) allergen, Der p 1, was developed as an edible vaccine. The C-terminal KDEL-tagged Der p 1 allergen specifically accumulated in seed endosperm tissue under the control of the endosperm-specific GluB1 promoter. Der p 1 reached a maximum concentration of 58 μg/grain and was deposited in the endoplasmic reticulum (ER)-derived protein body I (PB-I). Plant-derived Der p 1 was posttranslationally modified with high-mannose-type glycan structures. Glycosylated Der p 1 displayed reduced IgE binding capacity in comparison with its unglycosylated counterpart in vitro. Our results indicate that transgenic Der p 1 rice seeds are a safe, potential oral delivery vaccine for the treatment of HDM allergy.  相似文献   

3.
Besides IgE, the Ab isotype that gives rise to sensitization and allergic asthma, the immune response to common inhalant allergens also includes IgG. Increased serum titers of allergen-specific IgG, induced spontaneously or by allergen vaccination, have been implicated in protection against asthma. To verify the interference of topical IgG with the allergen-triggered eosinophilic airway inflammation that underlies asthma, sensitized mice were treated by intranasal instillation of specific IgG, followed by allergen challenge. This treatment strongly reduced eosinophilic inflammation and goblet cell metaplasia, and increased Th1 reactivity and IFN-gamma levels in bronchoalveolar lavage fluid. In contrast, inflammatory responses were unaffected in IFN-gamma-deficient mice or when applying F(ab')(2). Although dependent on specific allergen-IgG interaction, inflammation triggered by bystander allergens was similarly repressed. Perseverance of inflammation repression, apparent after secondary allergen challenge, and increased allergen capture by alveolar macrophages further characterized the consequences of topical IgG application. These results assign a novel protective function to anti-allergen IgG namely at the local level interference with the inflammatory cascade, resulting in repression of allergic inflammation through an FcgammaR- and IFN-gamma-dependent mechanism. Furthermore, these results provide a basis for topical immunotherapy of asthma by direct delivery of anti-allergen IgG to the airways.  相似文献   

4.
Type I allergy is characterized by the development of an initial Th2-dependent allergen-specific IgE response, which is boosted upon a subsequent allergen encounter. Although the immediate symptoms of allergy are mainly IgE-mediated, allergen-specific T cell responses contribute to the late phase as well as to the chronic manifestations of allergy. This study investigates the potential of costimulation blockade with CTLA4Ig and an anti-CD154 mAb for modifying the allergic immune response to the major timothy grass pollen allergen Phl p 5 in a mouse model. BALB/c mice were treated with the costimulation blockers at the time of primary sensitization to the Phl p 5 allergen or at the time of a secondary allergen challenge. Costimulation blockade (CTLA4Ig plus anti-CD154 or anti-CD154 alone) at the time of sensitization prevented the development of allergen-specific IgE, IgM, IgG, and IgA responses compared with untreated but sensitized mice. However, costimulation blockade had no influence on established IgE responses in sensitized mice. Immediate-type reactions as analyzed by a rat basophil leukemia cell mediator release assay were only suppressed by early treatment but not by a costimulation blockade after sensitization. CTLA4Ig given alone failed to suppress both the primary and the secondary allergen-specific Ab responses. Allergen-specific T cell activation was suppressed in mice by early as well as by a late costimulation blockade, suggesting that IgE responses in sensitized mice are independent of T cell help. Our results indicate that T cell suppression alone without active immune regulation or a shifting of the Th2/Th1 balance is not sufficient for the treatment of established IgE responses in an allergy.  相似文献   

5.
Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.  相似文献   

6.
Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.  相似文献   

7.
Asthma is a common increasing and relapsing disease that is associated with genetic and environmental factors such as respiratory viruses and allergens. It causes significant morbidity and mortality. The changes occurring in the airways consist of a chronic eosinophilic and lymphocytic inflammation, together with epithelial and structural remodeling and proliferation, and altered matrix proteins, which underlie airway wall narrowing and bronchial hyperresponsiveness (BHR). Several inflammatory mediators released from inflammatory cells such as histamine and cysteinyl-leukotrienes induce bronchoconstriction, mucus production, plasma exudation, and BHR. Increased expression of T-helper 2 (Th2)-derived cytokines such as interleukin-4 and 5 (IL-4,5) have been observed in the airway mucosa, and these may cause IgE production and terminal differentiation of eosinophils. Chemoattractant cytokines (chemokines) such as eotaxin may be responsible for the chemoattraction of eosinophils to the airways. The initiating events are unclear but may be genetically determined and may be linked to the development of a Th2-skewed allergen-specific immunological memory. The use of molecular biology techniques on tissues obtained from asthmatics is increasing our understanding of the pathophysiology of asthma. With the application of functional genomics and the ability to transfer or delete genes, important pathyways underlying the cause if asthma will be unraveled. The important outcome of this is that new preventive and curative treatments may ensue.  相似文献   

8.
To assess the capacity of a peptide-based immunotherapy to induce systemic tolerance via the nasal route, we designed three long overlapping peptides of 44-60 aa covering the entire sequence of phospholipase A2 (PLA2), a major bee venom allergen. Both prophylactic and therapeutic intranasal administrations of long peptides to PLA2-hypersensitive CBA/J mice induced specific T cell tolerance to the native allergen. In prophylactic conditions, this tolerance was marked by a suppression of subsequent specific IgE response, whereas the therapeutic approach in presensitized mice induced a more than 60% decrease in PLA2-specific IgE. This decline was associated with a shift in the cytokine response toward a Th1 profile, as demonstrated by decreased PLA2-specific IgG1 and enhanced IgG2a levels, and by a decline in the specific IL-4/IFN-gamma ratios. T cell transfer from long peptide-tolerized mice to naive animals abrogated the expected anti-PLA2 IgE and IgG1 Ab response, as well as specific T cell proliferation, but enhanced specific IgG2a response upon sensitization with PLA2. These events were strongly suggestive of a clonal anergy affecting more profoundly Th2 than the Th1 subsets. In conclusion, these results demonstrate that allergen-derived long peptides delivered via the nasal mucosa may offer an alternative to immunotherapy with native allergens without the inherent risk of systemic anaphylactic reactions. Moreover, long peptides, in contrast to immunotherapy strategies based on short peptides, have the advantage of covering all potential T cell epitopes, and may represent novel and safe tools for the therapy of allergic diseases.  相似文献   

9.
10.
IL-18 has been shown to be a strong cofactor for Th1 T cell development. However, we previously demonstrated that when IL-18 was combined with IL-2, there was a synergistic induction of a Th2 cytokine, IL-13, in both T and NK cells. More recently, we and other groups have reported that IL-18 can potentially induce IgE, IgG1, and Th2 cytokine production in murine experimental models. Here, we report on the generation of IL-18-transgenic (Tg) mice in which mature mouse IL-18 cDNA was expressed. CD8+CD44high T cells and macrophages were increased, but B cells were decreased in these mice while serum IgE, IgG1, IL-4, and IFN-gamma levels were significantly increased. Splenic T cells in IL-18 Tg mice produced higher levels of IFN-gamma, IL-4, IL-5, and IL-13 than control wild-type mice. Thus, aberrant expression of IL-18 in vivo results in the increased production of both Th1 and Th2 cytokines.  相似文献   

11.

Background

Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which Dermatophagoides farinae (Der f) is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity.

Objective

The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice.

Methods

Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL) and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-γ production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements.

Results

Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-γ but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-γ was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted.

Conclusions & Clinical Relevance

DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response in the model of asthma used herein.  相似文献   

12.
Current therapeutic approaches to asthma have had limited impact on the clinical management and resolution of this disorder. By using a novel vaccine strategy targeting the inflammatory cytokine IL-5, we have ameliorated hallmark features of asthma in mouse models. Delivery of a DNA vaccine encoding murine IL-5 modified to contain a promiscuous foreign Th epitope bypasses B cell tolerance to IL-5 and induces neutralizing polyclonal anti-IL-5 Abs. Active vaccination against IL-5 reduces airways inflammation and prevents the development of eosinophilia, both hallmark features of asthma in animal models and humans. The reduced numbers of inflammatory T cells and eosinophils in the lung also result in a marked reduction of Th2 cytokine levels. Th-modified IL-5 DNA vaccination reduces the expression of IL-5 and IL-4 by approximately 50% in the airways of allergen-challenged mice. Most importantly, Th-modified IL-5 DNA vaccination restores normal bronchial hyperresponsiveness to beta-methacholine. Active vaccination against IL-5 reduces key pathological events associated with asthma, such as Th2 cytokine production, airways inflammation, and hyperresponsiveness, and thus represents a novel therapeutic approach for the treatment of asthma and other allergic conditions.  相似文献   

13.
Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients.  相似文献   

14.
Rice seed-based edible vaccines expressing T-cell epitope peptides derived from Japanese cedar major pollen allergens have been used to successfully suppress allergen-specific Th2-mediated immunoglobulin E (IgE) responses in mouse experiments. In order to further expand the application of seed-based allergen-specific immunotherapy for controlling Japanese cedar pollinosis, we generated transgenic rice plants that specifically express recombinant Cry j 1 allergens in seeds. Cry j 1 allergens give low specific IgE-binding activity but contain all of the T-cell epitopes. The allergens were expressed directly or as a protein fusion with the major rice storage protein glutelin. Fusion proteins expressed under the control of the strong rice endosperm-specific GluB-1 promoter accumulated in rice endosperm tissue up to 15% of total seed protein. The fusion proteins aggregated with cysteine-rich prolamin and were deposited in endoplasmic reticulum-derived protein body I. The production of transgenic rice expressing structurally disrupted Cry j 1 peptides with low IgE binding activity but spanning the entire Cry j1 region can be used as a universal, safe and effective tolerogen for rice seed-based oral immunotherapy for cedar pollen allergy in humans and other mammals.  相似文献   

15.
The humoral and cellular responses to DNA vaccination of BALB/c mice with a novel antigen from the Fasciola hepatica saposin-like protein family (FhSAP-2) have been investigated. Two constructs were produced containing the FhSAP-2 DNA sequence, one intended for extracellular secretion of FhSAP-2 protein, and one expressing FhSAP-2 in the cytoplasm of a transfected cell. The constructs were tested in HEK 293T cells, with the secretory construct producing less detectable FhSAP-2 relative to cytoplasmic construct when observed by fluorescence. The size of expressed protein was confirmed by Western blot of cell lysate, but FhSAP-2 was undetectable in cell supernatants. Both, secretory and cytoplasmic constructs as well as FhSAP-2 recombinant protein were tested in mice. The antibody response elicited in mice vaccinated with the rFhSAP-2 induced high levels of IgG(1), IgG(2), and IgE as well as high levels of IL-10 and IFNgamma indicating a mixed Th1/Th2 response. Vaccination of mice intramuscularly with the cytoplasmic FhSAP-2 construct resulted in a dominant IgG(2a) isotype antibody as well as a dominant IFNgamma cytokine, with significant IgE, IgG(1), and IL-10 responses also present, suggesting a mixed Th1/Th2 profile. Isotype and cytokine profiles elicited by the FhSAP-2 secretory construct were similar to those obtained with the cytoplasmic construct but at levels that were significantly lower. The results demonstrate that FhSAP-2 can be delivered as a DNA vaccine construct and induces a stronger Th1 response than the recombinant protein alone. This could result in an improvement in the immunoprophylactic potential of this candidate vaccine against F. hepatica.  相似文献   

16.
In the present study, the relation between the efficacy of immunotherapy, and the strength and site of T cell activation during immunotherapy was evaluated. We used a model of allergic asthma in which OVA-sensitized and OVA-challenged mice display increased airway hyperresponsiveness, airway inflammation, and Th2 cytokine production by OVA-specific T cells. In this model, different immunotherapy strategies, including different routes of administration, or treatment with entire OVA or the immunodominant T cell epitope OVA(323-339), or treatment with a peptide analogue of OVA(323-339) with altered T cell activation capacity were studied. To gain more insight in how immunotherapy affects allergen-specific T cells, the site of Ag-specific T cell activation and the magnitude of the T cell response induced during different immunotherapy strategies were determined using an adoptive transfer model. Our data suggest that amelioration of airway hyperresponsiveness and inflammation is associated with the induction of a strong, synchronized, and systemic T cell response, resulting in a decreased OVA-specific Th2 response. In contrast, deterioration of the disease after immunotherapy is associated with the induction of a weak nonsynchronized T cell response, resulting in the enhancement of the OVA-specific Th2 response after challenge.  相似文献   

17.
T cell reactivity with allergoids: influence of the type of APC   总被引:2,自引:0,他引:2  
The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.  相似文献   

18.
To investigate the role of Roquin, a RING-type ubiquitin ligase family member, we used transgenic mice with enforced Roquin expression in T cells, with collagen-induced arthritis (CIA). Wild-type (WT) and Roquin transgenic (Tg) mice were immunized with bovine type II collagen (CII). Arthritis severity was evaluated by clinical score; histopathologic CIA severity; proinflammatory and anti-inflammatory cytokine levels; anti-CII antibody levels; and populations of Th1, Th2, germinal center B cells, and follicular helper T cells in CIA. T cell proliferation in vitro and cytokine levels were determined to assess the response to CII. Roquin Tg mice developed more severe CIA and joint destruction compared with WT mice. Production of TNF-α, IFN-γ, IL-6, and pathogenic anti-collagen CII-specific IgG and IgG2a antibodies was increased in Roquin Tg mice. In addition, in vitro T cell assays showed increased proliferation and proinflammatory cytokine production in response to CII as a result of enforced Roquin expression in T cells. Furthermore, the Th1/Th2 balance was altered by an increased Th1 and decreased Th2 population. These findings suggest that overexpression of Roquin exacerbates the development of CIA and that enforced expression of Roquin in T cells may promote autoimmune diseases such as CIA.  相似文献   

19.
Glycosylation-inhibiting factor (GIF) is a 13-kDa cytokine secreted from T cells. Administration of bioactive recombinant GIF inhibits IgG1 and IgE Ab responses in vivo. Treatment of B cells with the cytokine reduces the secretion of IgG1 and IgE induced by LPS and IL-4. To examine the effect on cognate T-B interaction, GIF was added to low-density B cells from MD4 transgenic (Tg) mice, which express B cell receptor specific for hen egg lysozyme (HEL). The B cells were subsequently pulsed with HEL-OVA conjugate and cultured with OVA-specific naive CD4 T cells from DO11.10 Tg mice. Treatment of Ag-presenting B cells with GIF reduced expansion and IL-2 secretion of naive T cells and rendered them hyporesponsive to antigenic restimulation, resulting in 50--95% reduction of IL-4 and IFN-gamma secretion upon restimulation with Ag. GIF dramatically inhibited Th effector generation when it was added to B cells before pulsing with HEL-OVA, whereas it showed little to no effect when added after B cells were pulsed with Ag. GIF was more effective when B cells from MD4 Tg mice were pulsed with HEL-OVA than when they were pulsed with OVA. This cytokine did not affect Th effector generation when B cells or irradiated splenocytes pulsed with OVA(323--339) peptide stimulated naive DO11.10 T cells. Confocal microscopy revealed that GIF inhibited internalization of HEL by B cells from MD4 Tg mice. Therefore, the cytokine may regulate early steps of Ag presentation involving B cell receptors to diminish Th effector generation from naive CD4 T cells.  相似文献   

20.
In this study, we examine the effects of Dermatophagoides farinae (Der f), a major source of airborne allergens, on alveolar macrophages (AMs), and we also test its contribution to allergic responses in mice. Der f activated NF-kappaB of AMs and, unlike OVA or LPS stimulation, up-regulated IL-6, TNF-alpha, and NO. In addition, it down-regulated antioxidants, but affected neither the expression nor production of IL-12. Der f-stimulated AMs expressed enhanced levels of costimulatory B7 molecules, supported T cell proliferation, and promoted Th2 cell development. The enhanced accessory function was suppressed by blockade mAbs to B7.2, IL-6, and TNF-alpha and by N-monomethyl-L-arginine, an NO synthase inhibitor, and N-acetylcysteine, a thiol antioxidant, whereas it was augmented by (+/-)-S-nitroso-N-acetylpenicillamine, an NO donor. Arg-Gly-Asp-Ser peptide and neo-glycoproteins galactose-BSA and mannose-BSA inhibited the Der f-induced IL-6 and TNF-alpha productions and enhanced accessory function of AMs. Der f was more potent than OVA for inducing pulmonary eosinophilic inflammation, NO, and serum allergen-specific IgG1 Ab production in mice. AMs from Der f-challenged mice expressed enhanced levels of B7 and augmented T cell proliferation ex vivo. In Der f-challenged mice, respiratory syncytial virus infection (5 x 10(5) pfu; 3 days before Der f instillation) augmented Der f-specific Ab production, whereas dexamethasone (50 mg/kg; 1 h before Der f instillation) diminished the allergic airway inflammation and Ab response. We conclude that AMs are sensitive targets for Der f and that the Der f-induced proinflammatory responses may represent an important mechanism in mediating the development of allergic sensitization and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号