首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

3.
In the sea urchin embryo, the oral-aboral axis is specified after fertilization by mechanisms that are largely unknown. We report that early sea urchin embryos express Nodal and Antivin in the presumptive oral ectoderm and demonstrate that these genes control formation of the oral-aboral axis. Overexpression of nodal converted the whole ectoderm into oral ectoderm and induced ectopic expression of the orally expressed genes goosecoid, brachyury, BMP2/4, and antivin. Conversely, when the function of Nodal was blocked, by injection of an antisense Morpholino oligonucleotide or by injection of antivin mRNA, neither the oral nor the aboral ectoderm were specified. Injection of nodal mRNA into Nodal-deficient embryos induced an oral-aboral axis in a largely non-cell-autonomous manner. These observations suggest that the mechanisms responsible for patterning the oral-aboral axis of the sea urchin embryo may share similarities with mechanisms that pattern the dorsoventral axis of other deuterostomes.  相似文献   

4.
The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFβ signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFβ signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.  相似文献   

5.
6.
7.
8.
9.
The method of separation of germ layers of rodent embryos by treating the embryonic shields with proteolytic enzymes and by microsurgery with the subsequent transplantation to ectopic sites has helped to gain a more detailed insight into what is going on during gastrulation in mammals. The space under the kidney capsule of adult animals seems to be the most appropriate ectopic site for transplantation of early postimplantation rat embryos or separated germ layers. After transplantation the grafts develop into teratomas whose complex histological structure reflects the initial developmental capacities of the graft. At the pre-primitive streak and the early primitive streak stages the primitive ectoderm differentiates into tissue derivatives of all three definitive germ layers, often in complex organotypic combinations. This is indirect evidence that all cells of the embryonic body originate from the primitive embryonic ectoderm. Halves of the primitive ectoderm obtained by a longitudinal or transverse cut through the egg cylinder give the same result. At the head fold stage the capacity for differentiation of the ectoderm is restricted to ectodermal and mesodermal derivatives. One day before gastrulation the isolated primitive ectoderm is not able to differentiate as renal isograft. The mesoderm isolated at the head fold stage and at later stages when its segmentation occurs, differentiates almost exclusively into the brown adipose tissue. The embryonic endoderm differentiates only in combination with the mesoderm. After transplantation the embryonic ectoderm loses its epithelial organization and breaks up into a mass of mesenchyme-like cells in which epithelial structures subsequently appear and differentiate in a way reminiscent of the reaggregation of cells in mixed cell suspension in vitro.  相似文献   

10.
11.
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways.  相似文献   

12.
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.  相似文献   

13.
14.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   

15.
16.
17.
18.
19.
Nodal is a key player in the process regulating oral–aboral axis formation in the sea urchin embryo. Expressed early within an oral organizing centre, it is required to specify both the oral and aboral ectoderm territories by driving an oral–aboral gene regulatory network. A model for oral–aboral axis specification has been proposed relying on the self activation of Nodal and the diffusion of the long-range antagonist Lefty resulting in a sharp restriction of Nodal activity within the oral field. Here, we describe the expression pattern of lefty and analyse its function in the process of secondary axis formation. lefty expression starts at the 128-cell stage immediately after that of nodal, is rapidly restricted to the presumptive oral ectoderm then shifted toward the right side after gastrulation. Consistently with previous work, neither the oral nor the aboral ectoderm are specified in embryos in which Lefty is overexpressed. Conversely, when Lefty's function is blocked, most of the ectoderm is converted into oral ectoderm through ectopic expression of nodal. Reintroducing lefty mRNA in a restricted territory of Lefty depleted embryos caused a dose-dependent effect on nodal expression. Remarkably, injection of lefty mRNA into one blastomere at the 8-cell stage in Lefty depleted embryos blocked nodal expression in the whole ectoderm consistent with the highly diffusible character of Lefty in other models. Taken together, these results demonstrate that Lefty is essential for oral–aboral axis formation and suggest that Lefty acts as a long-range inhibitor of Nodal signalling in the sea urchin embryo.  相似文献   

20.
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号