首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E3 ubiquitin ligase Cbl-b plays a crucial role in T cell activation and tolerance induction. However, the molecular mechanism by which Cbl-b inhibits T cell activation remains unclear. Here, we report that Cbl-b does not inhibit PI3K but rather suppresses TCR/CD28-induced inactivation of Pten. The elevated Akt activity in Cbl-b(-/-) T cells is therefore due to heightened Pten inactivation. Suppression of Pten inactivation in T cells by Cbl-b is achieved by impeding the association of Pten with Nedd4, which targets Pten K13 for K63-linked polyubiquitination. Consistent with this finding, introducing Nedd4 deficiency into Cbl-b(-/-) mice abrogates hyper-T cell responses caused by the loss of Cbl-b. Hence, our data demonstrate that Cbl-b inhibits T cell activation by suppressing Pten inactivation independently of its ubiquitin ligase activity.  相似文献   

2.
Chaperone functions of the E3 ubiquitin ligase CHIP   总被引:3,自引:0,他引:3  
The carboxyl terminus of the Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone as well as an E3 ubiquitin ligase that protects cells from proteotoxic stress. The abilities of CHIP to interact with Hsp70 and function as a ubiquitin ligase place CHIP at a pivotal position in the protein quality control system, where its entrance into Hsp70-substrate complexes partitions nonnative proteins toward degradation. However, the manner by which Hsp70 substrates are selected for ubiquitination by CHIP is not well understood. We discovered that CHIP possesses an intrinsic chaperone activity that enables it to selectively recognize and bind nonnative proteins. Interestingly, the chaperone function of CHIP is temperature-sensitive and is dramatically enhanced by heat stress. The ability of CHIP to recognize nonnative protein structure may aid in selection of slow folding or misfolded polypeptides for ubiquitination.  相似文献   

3.
Runx1 is a key factor in the generation and maintenance of hematopoietic stem cells. Improper expression and mutations in Runx1 are frequently implicated in human leukemia. Here, we report that CHIP, the carboxyl terminus of Hsc70-interacting protein, also named Stub1, physically interacts with Runx1 through the TPR and Charged domains in the nucleus. Over-expression of CHIP directly induced Runx1 ubiquitination and degradation through the ubiquitin-proteasome pathway. Interestingly, we found that CHIP-mediated degradation of Runx1 is independent of the molecular chaperone Hsp70/90. Taken together, we propose that CHIP serves as an E3 ubiquitin ligase that regulates Runx1 protein stability via an ubiquitination and degradation mechanism that is independent of Hsp70/90.  相似文献   

4.
TRAC-1 (T cell RING (really interesting new gene) protein identified in activation screen) is a novel E3 ubiquitin ligase identified from a retroviral vector-based T cell surface activation marker screen. The C-terminal truncated TRAC-1 specifically inhibited anti-TCR-mediated CD69 up-regulation in Jurkat cells, a human T leukemic cell line. In this study, we show that TRAC-1 is a RING finger ubiquitin E3 ligase with highest expression in lymphoid tissues. Point mutations that disrupt the Zn(2+)-chelating ability of its amino-terminal RING finger domain abolished TRAC-1's ligase activity and the dominant inhibitory effect of C-terminal truncated TRAC-1 on TCR stimulation. The results of in vitro biochemical studies indicate that TRAC-1 can stimulate the formation of both K48- and K63-linked polyubiquitin chains and therefore could potentially activate both degradative and regulatory ubiquitin-dependent pathways. Antisense oligonucleotides to TRAC-1 specifically reduced TRAC-1 mRNA levels in Jurkat and primary T cells and inhibited their activation in response to TCR cross-linking. Collectively, these results indicate that the E3 ubiquitin ligase TRAC-1 functions as a positive regulator of T cell activation.  相似文献   

5.
PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin’s ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity.  相似文献   

6.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.  相似文献   

7.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

8.
The Notch pathway is a widely studied means of intercellular signaling responsible for the determination of cell fate, cell differentiation, and boundary formation (reviewed in ). The main effectors of this pathway, Notch (N) and Delta (Dl), have been shown to function as a receptor and ligand, respectively. Genetic and phenotypic studies suggest that Neuralized (Neu), a RING finger protein, also plays a role within the N-Dl pathway, although its biochemical function is unknown. Here, we show that Neu is required at the plasma membrane for functional activity and that its RING finger domain acts as an E3 ubiquitin ligase. These data suggest that the role of Neu is to target components of the N-Dl pathway for ubiquitination, allowing for propagation and/or regulation of the signal.  相似文献   

9.
Mutations in the PARKIN gene are the most common cause of hereditary parkinsonism. The parkin protein comprises an N-terminal ubiquitin-like domain, a linker region containing caspase cleavage sites, a unique domain in the central portion, and a special zinc finger configuration termed RING-IBR-RING. Parkin has E3 ubiquitin-protein ligase activity and is believed to mediate proteasomal degradation of aggregation-prone proteins. Whereas the effects of mutations on the structure and function of parkin have been intensely studied, post-translational modifications of parkin and the regulation of its enzymatic activity are poorly understood. Here we report that parkin is phosphorylated both in human embryonic kidney HEK293 cells and human neuroblastoma SH-SY5Y cells. The turnover of parkin phosphorylation was rapid, because inhibition of phosphatases with okadaic acid was necessary to stabilize phosphoparkin. Phosphoamino acid analysis revealed that phosphorylation occurred mainly on serine residues under these conditions. At least five phosphorylation sites were identified, including Ser101, Ser131, and Ser136 (located in the linker region) as well as Ser296 and Ser378 (located in the RING-IBR-RING motif). Casein kinase-1, protein kinase A, and protein kinase C phosphorylated parkin in vitro, and inhibition of casein kinase-1 caused a dramatic reduction of parkin phosphorylation in cell lysates. Induction of protein folding stress in cells reduced parkin phosphorylation, and unphosphorylated parkin had slightly but significantly elevated autoubiquitination activity. Thus, complex regulation of the phosphorylation state of parkin may contribute to the unfolded protein response in stressed cells.  相似文献   

10.
11.
The ubiquitin proteasome pathway controls the cellular degradation of ~80-90% of the proteome in a highly regulated manner. In this pathway, E3 ligases are responsible for the conjugation of ubiquitin to protein substrates which can lead to their destruction by the 26S proteasome. Aberrant E3 ligases have been implicated in several diseases and are widely recognized as attractive targets for drug discovery. As researchers continue to characterize E3 ligases, additional associations with various disease states are being exposed. The availability of assays that allow rapid analysis of E3 ligase activity is paramount to both biochemical studies and drug discovery efforts aimed at E3 ligases. To address this need, we have developed a homogenous assay for monitoring ubiquitin chain formation using Tandem Ubiquitin Binding Entities (TUBEs). TUBEs bind selectively to polyubiquitin chains versus mono-ubiquitin thus enabling the detection of polyubiquitin chains in the presence of mono-ubiquitin. This assay reports on the proximity between the protein substrate and TUBEs as a result of polyubiquitin chain formation by an E3 ligase. This homogenous assay is a step forward in streamlining an approach for characterizing and quantitating E3 ligase activity in a rapid and cost effective manner. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

12.
AtSAP5, one of approximately 14 members of the Stress Associated Protein gene family in Arabidopsis, was identified by its expression in response to salinity, osmotic, drought and cold stress. AtSAP5 shows strong homology to OSISAP1, an A20/AN1-type zinc finger protein implicated in stress tolerance in rice. To evaluate the function of AtSAP5 in the regulation of abiotic stress responses, transgenic Arabidopsis plants that over-express AtSAP5 (35S::AtSAP5) were characterized, along with wild-type and T-DNA knock-down plants. Plants that over-express AtSAP5 showed increased tolerance to environmental challenges including salt stress, osmotic stress and water deficit. Comparison of gene expression patterns between 35S::AtSAP5 transgenic plants and wild-type plants under normal conditions and water deficit stress indicated that over-expression of AtSAP5 correlates with up-regulation of drought stress responsive gene expression. Analysis of transgenic plants that express GFP-AtSAP5 showed that it is localized primarily in nuclei of root cells and recombinant AtSAP5 has E3 ubiquitin ligase activity in vitro. These results indicate that AtSAP5 has E3 ligase activity and acts as a positive regulator of stress responses in Arabidopsis.  相似文献   

13.
Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene predispose individuals to a variety of human tumors, including renal cell carcinoma, hemangioblastoma of the central nervous system, and pheochromocytoma. Here we report on the identification and characterization of the Drosophila homolog of VHL. The predicted amino acid sequence of Drosophila VHL protein shows 29% identity and 44% similarity to that of human VHL protein. Biochemical studies have shown that Drosophila VHL protein binds to Elongins B and C directly, and via this Elongin BC complex, associates with Cul-2 and Rbx1. Like human VHL, Drosophila VHL complex containing Cul-2, Rbx1, Elongins B and C, exhibits E3 ubiquitin ligase activity. In addition, we provide evidence that hypoxia-inducible factor (HIF)-1alpha is the ubiquitination target of both human and Drosophila VHL complexes.  相似文献   

14.
15.
Legionella pneumophila has a Dot/Icm type IV secretion system used to translocate a number of 'effector proteins' which subvert host cell functions. In this study, we identified 19 novel Dot/Icm substrate proteins using a systematic screening technique. A blast analysis revealed that one of the substrates, which we named LubX ( L egionella U - b o x protein), contains two domains that have a remarkable similarity to the U-box, a domain found in eukaryotic E3 ubiquitin ligases. The expression of LubX is induced upon infection, and most of the LubX produced was translocated into the host cells. LubX has ubiquitin ligase activity in conjunction with UbcH5a or UbcH5c E2 enzymes and mediates polyubiquitination of host Clk1 (Cdc2-like kinase 1). We demonstrate that one of the U-boxes (U-box 1) is critical to the ubiquitin ligation, and the other U-box (U-box 2) mediates interaction with Clk1. Thus, the two U-boxes of LubX have distinct functions, and U-box 2 plays a non-canonical role in substrate binding. Although we demonstrate that inhibition of Clk kinase results in a marked reduction of Legionella growth within mouse macrophages, the consequence of Clk1 ubiquitination is still being elucidated. Together, these data suggest that Clk1 is the target host molecule which Legionella modulates during infection.  相似文献   

16.
Apoptosis inducing factor (AIF) is a mitochondrial oxidoreductase that scavenges reactive oxygen species under normal conditions. Under certain stresses, such as exposure to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), AIF is truncated and released from the mitochondria and translocated into the nucleus, where the truncated AIF (tAIF) induces caspase-independent cell death. However, it is unknown how cells decide to kill themselves or operate ways to survive when they encounter stresses that induce the release of tAIF. Here, we demonstrated that USP2 and CHIP contribute to the control of tAIF stability. USP2 deubiquitinated and stabilized tAIF, thus promoting AIF-mediated cell death. In contrast, CHIP ubiquitinated and destabilized tAIF, thus preventing the cell death. Consistently, CHIP-deficient cells showed an increased sensitivity to MNNG. On the other hand, knockdown of USP2 attenuated MNNG-induced cell death. Moreover, exposure to MNNG caused a dramatic decrease in CHIP level, but not that of USP2, concurrent with cell shrinkage and chromatin condensation. These findings indicate that CHIP and USP2 show antagonistic functions in the control of AIF-mediated cell death, and implicate the role of the enzymes as a switch for cells to live or die under stresses that cause tAIF release.  相似文献   

17.
18.
Functional dissection of a HECT ubiquitin E3 ligase   总被引:1,自引:0,他引:1  
Ubiquitination is one of the most prevalent protein post-translational modifications in eukaryotes, and its malfunction is associated with a variety of human diseases. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitination remain largely unknown. Here we used a combination of yeast proteome chip assays, genetic screening, and in vitro/in vivo biochemical analyses to identify and characterize eight novel in vivo substrates of the ubiquitinating enzyme Rsp5, a homolog of the human ubiquitin-ligating enzyme Nedd4, in yeast. Our analysis of the effects of a deubiquitinating enzyme, Ubp2, demonstrated that an accumulation of Lys-63-linked polyubiquitin chains results in processed forms of two substrates, Sla1 and Ygr068c. Finally we showed that the localization of another newly identified substrate, Rnr2, is Rsp5-dependent. We believe that our approach constitutes a paradigm for the functional dissection of an enzyme with pleiotropic effects.  相似文献   

19.
A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号