首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds were obtained from seven natural populations of Acacia dealbata, three natural populations of A. mangium and a seed orchard of A. mangium, representing the natural range of the two species. Polyploids were discovered in two of the seven populations of A. dealbata. The 2C DNA amount for diploid A. dealbata (2n = 2x = 26) was 1.74 pg, and for diploid A. mangium (2n = 2x = 26) was 1.30 pg. A naturally occurring tetraploid of A. dealbata (2n = 4x = 52) had a 2C DNA amount of 3.41 pg and a naturally occurring triploid genotype had a 2C DNA amount of 2.53 pg. The use of colchicine and oryzalin was investigated as a means of producing higher frequencies of tetraploids of both A. mangium and A. dealbata for incorporation into breeding programmes. Colchicine treatment gave tetraploid frequencies up to 29% for A. dealbata seedlings, and up to 18% for A. mangium seedlings. In contrast, no tetraploid A. mangium was detected following oryzalin treatment, and the low frequencies of tetraploids observed in A. dealbata could be attributed to their natural occurrence.  相似文献   

2.
Nuclear DNA contents were estimated by microdensitometry in five species of Akodon rodents: Arodon molinae, A. dolores, A. mollis, A. azarae, Bolomys obscurus) and in three chromosomal varieties of A. molinae (2n = 42; 2n = 43, 2n = 22). The data obtained showed that the species with the highest DNA content was B. obscurus, followed in order of decreasing genome size by A. molinae, A. mollis, A. dolores and A. azarae. In A. molinae the forms with 2n = 42 chromosomes had the lowest and the forms with 2n = 44 the highest amount of DNA, while the forms with 2n = 43 had intermediate DNA contents. The variation in DNA amount detected in A. molinae was interpreted as a phenomenon of amplification occurring in the chromosomal areas involved in the chromosomal rearrangement giving rise to the polymorphism exhibited by this species. The DNA contents of shared chromosomes (chromosomes with similar size, morphology and G banding pattern, which are found in two or more phylogenetically related species), were compared and correlated with values of total nuclear DNA. The information obtained indicates that: (a) shared chromosomes have variable amounts of DNA: (b) in a given species there is a correlation between the amount of nuclear and chromosomal DNA in most shared chromosomes (and perhaps in most of the chromosomal complement), e.g., the higher the amount of nuclear DNA, the higher the content of DNA in shared chromosomes; (c) some chromosomes may undergo processes of amplification or deletion restricted to certain regions and usually related with mechanisms of chromosomal rearrangements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
K P Singh  S N Raina  A K Singh 《Génome》1996,39(5):890-897
The 2C nuclear DNA amounts were determined for 99 accessions, representing 23 Arachis species from 8 of 9 taxonomic sections, and two synthetic amphidiploids. Mean 2C DNA amounts varied by 15.20%, ranging from 10.26 to 11.82 pg, between accessions of Arachis hypogaea (2n = 4x = 40). Nuclear DNA content variation (5.33-5.91 pg) was also detected among Arachis duranensis (2n = 2x = 20) accessions. The intraspecific variation in the two species may have resulted from indirect selection for favourable genome sizes in particular environmental conditions. The accessions belonging to A. hypogaea ssp. hypogaea (mean value 11.27 pg) with longer life cycle had significantly larger mean DNA content than the accessions of A. hypogaea ssp. fastigiata (mean value 10.97 pg). For 20 diploid (2n = 2x = 20) species of the genus, 2C nuclear DNA amounts ranged from approximately 3 to 7 pg. The diploid perennial species of section Arachis have about 12% more DNA than the annual species. Comparisons of DNA amounts show that evolutionary rating is not a reliable guide to DNA amounts in generic sections of the genus; lower DNA values with evolutionary advancement were found in sections Heteranthae and Triseminatae, but the same was not true for sections Arachis and Caulorrhizae. Similarly, there is evidence of significant differences in DNA content between 4 ancient sections (Procumbentes, Erectoides, Rhizomatosae, and Extranervosae) of the genus. The occurrence of genome size plasticity in both A. duranensis and A. hypogaea provides evidence that A. duranensis could be one of the diploid progenitors of A. hypogaea. The DNA content in the two synthetic amphidiploids corresponded to the sum value estimated for parental species. Key words : Arachis species, genome size, Arachis hypogaea, Arachis duranensis, intraspecific variation.  相似文献   

4.
黄喉拟水龟细胞核DNA含量的分析   总被引:10,自引:0,他引:10  
以黄喉拟水龟 (Mauremysmutica)的红血细胞为材料 ,以鸡红血细胞为DNA标准 ( 2 5pg/2c) ,采用流式细胞仪测定了黄喉拟水龟及其两个种群的细胞核基因组DNA含量。黄喉拟水龟的细胞基因组DNA含量为 5 16± 0 2 9pg/2c (n =6 0 ) ;南方种群的细胞核DNA含量为 5 19± 0 30pg/2c (n =30 ) ,北方种群为 5 14±0 30pg/2c (n =30 ) ,两个种群的核DNA含量无显著差异 (t=0 6 84 7,df =5 8,P >0 0 5 )。  相似文献   

5.
This study aimed to define the karyotype of the recently described Iberian endemic Iberochondrostoma almacai, to revisit the previously documented chromosome polymorphisms of its sister species I.lusitanicum using C-, Ag-/CMA(3) and RE-banding, and to compare the two species genome sizes. A 2n = 50 karyotype (with the exception of a triploid I.lusitanicum specimen) and a corresponding haploid chromosome formula of 7M:15SM:3A (FN = 94) were found. Multiple NORs were observed in both species (in two submetacentric chromosome pairs, one of them clearly homologous) and a higher intra and interpopulational variability was evidenced in I.lusitanicum. Flow cytometry measurements of nuclear DNA content showed some significant differences in genome size both between and within species: the genome of I. almacai was smaller than that of I.lusitanicum (mean values 2.61 and 2.93 pg, respectively), which presented a clear interpopulational variability (mean values ranging from 2.72 to 3.00 pg). These data allowed the distinction of both taxa and confirmed the existence of two well differentiated groups within I. lusitanicum: one that includes the populations from the right bank of the Tejo and Samarra drainages, and another that reunites the southern populations. The peculiar differences between the two species, presently listed as "Critically Endangered", reinforced the importance of this study for future conservation plans.  相似文献   

6.
Dasypyrum villosum (2n=14), a Mediterranean grass species of the Triticeae, exhibits intraindividual fruit colour polymorphism from pale yellow to almost black. Several studies have reported differences between the plants emerging from pale and dark fruits. They include histone content in root meristem nuclei, cell cycle duration, heterochromatin banding pattern, frequency of a tandemly repeated sequence, and nuclear genome size. In the present study, we examine whether the reports of genome size being up to 1.24-fold larger in seedlings from the lighter caryopses are reproducible. In all, 29 accessions from various countries, totaling 186 plants, were investigated for genome size using flow cytometry with propidium iodide as the DNA stain. Individuals differed 1.12-fold at most and accessions 1.07-fold. The mean genome size (1C-value) was 5.07 pg or 4954 Mbp. Within-accession comparisons of seedlings derived from light and dark caryopses were insignificant (P>0.100). Thus, we found no evidence for a modificatory genome size plasticity in D. villosum. In the light of our data, the previously reported genome size variation, up to 1.66-fold within populations and 1.67-fold between populations, appears unrealistically high. Suboptimal technical procedures for quantitative Feulgen staining are probably responsible for these earlier observations.  相似文献   

7.
The purpose of this study was to investigate abnormal larvae produced in the experimental induction of gynogenetic northern pike ( Esox lucius L.), using a flow cytometry method. We reported for the first time the mosaic individuals found in genetically manipulated northern pike. Two types of abnormal larvae were obtained after eggs were fertilized with UV-irradiated sperm and then exposed to heat shock treatment. One type had malformations frequently associated with haploid syndrome and were proven to be haploids. The other type had a similar body size and appearance as diploids but with curved body and a swirling swimming pattern. Individuals of the second type were proven to be mosaics containing both 1n (59.5 ± 14.7% mean ± SD) and 2n (29.7 ± 13.3%) cell populations. The ratio of 1n:2n cell populations ranged from 80.6:10.6 to 38.5:44.7. There was no significant difference in the relative nuclear DNA content and cell size between 1n and 2n cell populations of the mosaic individuals as compared to haploid cells and diploid cells, respectively. The nuclear DNA content of the northern pike was estimated to be 2.07 ± 0.06 pg ( n  = 10) given that rainbow trout has a red blood cell nucleus DNA content of 4.66 pg.  相似文献   

8.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

9.
Chromosomes and nuclear DNA amount were analyzed in leaf tissues of Luzula nivea, Luzula luzuloides, and Luzula multiflora. Intra- and interspecific karyological variability was stated. Chromosome numbers in diploids ranged 2n = 8-24 in L. nivea and L. luzuloides and 2n = 12-84 in hexaploid L. multiflora. Karyological variability resulted mainly from chromosome fission (agmatoploidy) and aneusomaty; chromosome fusion (symploidy) and polyploidy were also involved. Flow cytometric determination of nuclear genome size using propidium iodide staining gave values of 1.584 pg in L. luzuloides, 1.566 pg in L. nivea, and 3.034 pg in L. multiflora. Variability in relative nuclear genome size within species was measured by 4',6-diamidino-2-phenylindole staining. In contrast with previous reports, variability was fairly small and ranged from 1.796 to 1.864 pg in L. luzuloides, from 1.783 to 1.847 pg and from 1.737 to 1.808 pg in two populations (S and F) of L. nivea, respectively, and from 3.125 to 3.271 pg in L. multiflora. An intraplant (interleaf) genome size variation was also observed and its possible causes are discussed.  相似文献   

10.
BACKGROUND AND AIMS: Plant genome size is an important biological characteristic, with relationships to systematics, ecology and distribution. Currently, there is no information regarding nuclear DNA content for any Carthamus species. In addition to improving the knowledge base, this research focuses on interspecific variation and its implications for the infrageneric classification of this genus. Genome size variation in the process of allopolyploid formation is also addressed. METHODS: Nuclear DNA samples from 34 populations of 16 species of the genus Carthamus were assessed by flow cytometry using propidium iodide. KEY RESULTS: The 2C values ranged from 2.26 pg for C. leucocaulos to 7.46 pg for C. turkestanicus, and monoploid genome size (1Cx-value) ranged from 1.13 pg in C. leucocaulos to 1.53 pg in C. alexandrinus. Mean genome sizes differed significantly, based on sectional classification. Both allopolyploid species (C. creticus and C. turkestanicus) exhibited nuclear DNA contents in accordance with the sum of the putative parental C-values (in one case with a slight reduction, frequent in polyploids), supporting their hybrid origin. CONCLUSIONS: Genome size represents a useful tool in elucidating systematic relationships between closely related species. A considerable reduction in monoploid genome size, possibly due to the hybrid formation, is also reported within these taxa.  相似文献   

11.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   

12.
Nuclear genome size of conifers as measured by flow cytometry with propidium iodide was investigated, striving to collect at least a single species from each genus. 64 out of 67 genera and 172 species were measured. Of the 67 genera, 21 are reported here for the first time and the same is true for 76 species. This nearly doubles the number of measured genera and adds 50% to the number of analyzed species. Conifers have chromosome numbers in the range of n = (7)10–12(19). However, the nuclear DNA content (2C‐value) is shown here to range from 8.3 to 71.6 picogram. The largest genome contains roughly 6 × 1010 more base pairs than the smallest genome. Genome sizes are evaluated and compared with available taxonomic treatments. For the mainly (sub)tropical Podocarpaceae small genome sizes were found with a 2C‐value of only 8–28 pg, with 13.5 pg on average. For the Taxaceae 2C‐values from 23–60 pg were determined. Not surprisingly, the genus Pinus with 97 species (39 species measured here) has a broad range with 2C = 38–72 pg. A factor of 2 difference is also found in the Cupressaceae (136 species) with nuclear DNA contents in the range 18–35 pg. Apart from the allohexaploid Sequoia, ploidy plays a role only in Juniperus and some new polyploids are found. The data on genome size support conclusions on phylogenetic relationships obtained by DNA sequencing. Flow cytometry is applicable even to young plants or seeds for the monitoring of trade in endangered species.  相似文献   

13.
BACKGROUND AND AIMS: Nuclear DNA amounts of 12 diploid and one tetraploid taxa and 12 natural interspecific hybrids of Cirsium from 102 populations in the Czech Republic, Austria, Slovakia and Hungary were estimated. METHODS: DAPI and PI flow cytometry were used. KEY RESULTS: 2C-values of diploid (2n = 34) species varied from 2.14 pg in C. heterophyllum to 3.60 pg in C. eriophorum (1.68-fold difference); the 2C value for the tetraploid C. vulgare was estimated at 5.54 pg. The DNA contents of hybrids were located between the values of their putative parents, although usually closer to the species with the smaller genome. Biennial species of Cirsium possessed larger nuclear DNA amounts than their perennial relatives. Genome size was negatively correlated with Ellenberg's indicator values for continentality and moisture and with eastern limits of distribution. A negative relationship was also detected between the genome size and the tendency to form natural interspecific hybrids. On the contrary, C-values positively corresponded with the spinyness (degree of spinosity). AT frequency ranged from 48.38 % in C. eriophorum to 51.75 % in C. arvense. Significant intraspecific DNA content variation in DAPI sessions was detected in C. acaule (probably due to the presence of B-chromosomes), and in tetraploid C. vulgare. Only the diploid level was confirmed for the Pannonian C. brachycephalum, generally considered to be tetraploid. In addition, triploidy was discovered for the first time in C. rivulare. CONCLUSIONS: Considerable differences in nuclear DNA content exist among Central European species of Cirsium on the diploid level. Perennial soft spiny Cirsium species of wet habitats and continental distributions generally have smaller genomes. The hybrids of diploid species remain diploid, and their DNA content is smaller than the mean of the parents. Species with smaller genomes produce interspecific hybrids more frequently.  相似文献   

14.
Nuclear DNA content (2C) is used as a new criterion to investigate nearly all species of the genus Nerine Herb. The species have the same chromosome number (2n = 2x = 22), with the exception of three triploid plants found. The nuclear DNA content of the diploids, as measured by flow cytometry with propidium iodide, is demonstrated to range from 18.0–35.3 pg. This implies that the largest genome contains roughly 2 × 1010 more base pairs than the smallest. The species, arranged according to increasing genome size, fell apart in three groups if growth cycle and leaf width were also considered. A narrow-leafed, evergreen group with a DNA content between 18.0 and 24.6 pg contains thirteen species, a broad-leaved winter growing group with four species has a DNA content from 25.3–26.2 pg and a broad-leafed summer growing group has a DNA content of 26.8–35.3 pg and contains six species. If the presence of filament appendages and hairiness of the pedicels were also considered, the thirteen evergreen species could be further divided into a group without filament appendages or hairy pedicels with a DNA content of 18.0–18.7 pg. A second group without filament appendages but with hairy pedicels had a DNA content of 19.7–22.3 pg. And a third group with both filament appendages and hairy pedicels had a DNA content of 22.0–24.6 pg. The exception is N. marincowitzii that, despite a low DNA content and narrow leaves is summer growing. The broad-leafed group is further characterised by the absence of filament appendages and the absence of strongly hairy pedicels. The exception here is N. pusilla that, despite a high DNA content, has narrow leaves and minutely hairy pedicels. Nuclear DNA content as measured by flow cytometry is shown to be relevant to throw new light on the relationships between Nerine species.  相似文献   

15.
Flow-cytometric analyses of 29 species of microchiropteran bats representing four families and 20 genera revealed that bats possess only 79% (5.43 pg) of the DNA content of a “typical” mammal (e.g., Mus musculus strain C57BL; 7 pg). Chiroptera, the second largest order of mammals, is thus an exception to the prevailing view that mammals possess a minimum nuclear DNA content of 7 pg. Limitations on cell size resulting from a high metabolic rate may have constrained evolution of DNA content and could explain why the extensive heterochromatic additions that are common in some groups of mammals are absent in bats. Chromosomes of bats have been well studied; detailed chromosomal banding data are available for nearly all the species used in this investigation. However, no significant correlations were found between DNA content and karyotypic characteristics such as 2n, fundamental number, and rate or pattern of chromosomal evolution.  相似文献   

16.
Genome evolution in the genus Sorghum (Poaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. METHODS: DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. KEY RESULTS: Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8.1-fold (1.27-10.30 pg) among the 21 Sorghum species. 2C DNA content varies 3.6-fold from 1.27 pg to 4.60 pg among the 2n = 10 species and 5.8-fold (1.52-8.79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8.8-fold range from 0.26 pg to 2.30 pg. The mean 2C DNA content of perennial species (6.20 pg) is significantly greater than the mean (2.92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1.15 pg) and of perennials (1.29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2.89 pg) and perennial (7.73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1.66 pg) is significantly greater than that of the annuals (1.09 pg); (c) the mean maximum latitude at which perennial species grow (-25.4 degrees) is significantly greater than the mean maximum latitude (-17.6) at which annual species grow. CONCLUSIONS: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a 'one way ticket to genomic obesity' as has been proposed for the grasses.  相似文献   

17.
There are only a few exceptions to the rule that polyploidy in Taraxacum is associated with agamospermy. One of them is the sexual, tetraploid species Taraxacum stenocephalum. Incidentally, remarkable variation in karyology was found in this species. The present study aims to confirm this variation by an extensive screen of nuclear DNA content. Individuals from two large populations in the Lesser and Greater Caucasus, Georgia were analyzed using flow cytometry to ascertain intraspecific nuclear DNA content variation. Across the whole data set comprising all 159 individuals, a 1.223-fold difference was detected based on propidium iodide (PI) analyses. To verify this finding, we compared flow-cytometric data obtained using DAPI (4′,6-diamidino-2-phenylindole) and PI staining using a representative subset of individuals. This comparison revealed a 1.194-fold difference in DNA content for DAPI and a 1.219-fold difference for PI. Mean nuclear genome size in absolute terms (2C value ± s.d.) was estimated at 4.38?±?0.21 pg, ranging from 4.01 pg to 4.89 pg, despite the invariable chromosome counts of 2n?=?32. A regression analysis comparing the datasets for DAPI and PI staining found a strong correlation between data obtained by the DAPI and PI dyes (R?=?0.976; P?=?0.0001). Simultaneous high-resolution flow-cytometric analyses also proved the accuracy of our findings. We discuss possible sources of these large differences in DNA content within Taraxacum stenocephalum. Further research is needed to identify the source of this remarkable variation.  相似文献   

18.
Summary Aedes albopictus is commonly distributed in most parts of the Oriental region and on many islands in the Indian and the Pacific Oceans. The species was recently introduced into the United States and Brazil. Feulgen cytophotometric quantitation of haploid nuclear DNA content was carried out for 37 populations of Ae. albopictus to determine the extent of intraspecific variation in nuclear DNA content and whether the range expansion of the species has coincided with an increase in DNA content. The haploid nuclear DNA content varied nearly three-fold. The minimum DNA content was 0.62 pg in Koh Samui from Thailand, and the maximum DNA content was 1.66 pg in Houston-61 from the United States. Statistical comparisons of populations revealed significant differences in DNA contents. No geographic clustering of populations was noted with respect to DNA content. In general, populations from the United States and Brazil had higher DNA contents, but there was no indication that the range expansion had occurred hand in hand with an increase in DNA content. Each population had a specific amount of DNA that is probably imposed by the microenvironment.  相似文献   

19.
This represents the first study of nuclear DNA content in alarge sample (135 spp.) from a tropical arboreal genus, in whicha large proportion of the species were examined (42 spp., 31.1%).Somatic chromosome numbers and 4C-DNA values for 51 taxa ofLonchocarpus are reported. All taxa were diploid with 2 n =22,but their DNA content ranged from 1.92 to 2.86 pg 4C nucleus,corresponding to a 48.95% variation in genome size. In the 74collections studied, no correlation was observed between DNAcontent and habitat altitude. Variation in nuclear DNA contentwas analysed at the level of genus, subgenus, section and subsection.Variation in genome size was also studied within some species,either among widely separated populations or among differentintraspecific taxa. Very little variation in genome size wasdetected between populations, subspecies, and varieties of thesame species. The taxonomic implications of variation in nuclearDNA content are discussed.Copyright 2000 Annals of Botany Company Lonchocarpus (Leguminosae), DNA content, chromosome number.  相似文献   

20.
Summary Variation in nuclear DNA amounts found in different species of Cucumis was surveyed. The DNA amounts varied from 1.373 to 2.483 pg in diploids and from 2.846 to 3.886 pg in tetraploids. DNA amount was not correlated with chromosome number and periodicity. Tetraploids were found to have double the quantity of nuclear DNA of diploids. A positive linear relationship was established between the nuclear DNA amounts and volume of chromosomes. The botanical varieties within a particular species do not differ significantly for 2C DNA amounts. A comparison of the distribution of DNA amounts among different chromosomes of haploid complement in different species revealed that the quantitative DNA changes associated with speciation affected all chromosomes. DNA changes were not however, of the same magnitude in all chromosomes of the complement. Speciation in Cucumis thus seems to have occurred through amplification or diminution of DNA proportionate to the size of chromosomes. The relationship between the basic numbers, x=7 and x=12, will have to be considered relative to the high DNA amount noticed in some species with x=12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号