首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin‐like sequences as a strategy to rationally increase the strength of elastin‐based materials while maintaining extensibility. We demonstrate a thermo‐responsive phase separation and spontaneous colloid‐like droplet formation from silk‐elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross‐linked materials. Silk‐elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin‐only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693–703, 2016.  相似文献   

3.
The cyanogen bromide‐resistant proteins of lamprey cartilage are biochemically related to the mammalian elastic protein, elastin. This study investigates their mechanical properties and enquires whether, like elastin, long‐range elasticity arises in them from a combination of entropic and hydrophobic mechanisms. Branchial and pericardial proteins resembled elastin mechanically, with elastic moduli of 0.13–0.35 MPa, breaking strains of 50%, and low hysteresis. Annular and piston proteins had higher elastic moduli (0.27–0.75 MPa) and larger hysteresis. Exchanging solvent water for trifluoroethanol increased the elastic moduli, whereas increasing temperature lowered the elastic moduli. Raman microspectrometry showed small differences in side‐chain modes consistent with reported biochemical differences. Decomposition of the amide I band indicated that the secondary structures were like those of elastin, preponderantly unordered, which probably confer the conformational flexibility necessary for entropy elasticity. Piston and annular proteins showed the strongest interactions with water, suggesting, together with the mechanical testing data, a greater role of hydrophobic interactions in their mechanics. Two‐photon imaging of intrinsic fluorescence and dye injection experiments showed that annular and piston proteins formed closed‐cell honeycomb structures, whereas the branchial and pericardial proteins formed open‐cell structures, which may account for the differences in mechanical properties. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 187–202, 2015.  相似文献   

4.
J M Gosline 《Biopolymers》1978,17(3):677-695
The thermodynamics of the elastic process in the rubberlike protein elastin have been investigated by microcalorimetery. The results indicate that the reversible heat liberated upon the extension of water-swollen elastin at room temperature is much largerthan the stored elastic energy, indicating a large than the stored elastic energy, indicating a large, negative internal energy change for stretching. The ratio of the measured internal energy change to the stored energy varies inversely wiht extension, and at 22° C it is ?91 for 2% extension and ?3 for 70% extension. The interanl energy change also varies dramatically with temperature over the range of 2–65° C it is zero. The temperature dependence for internal energy change is virtually identical to the temperature dependence for internal energy changes associated with the breaking of hydrophobic interactions, and it is suggested that the measured internal energy change can be attributed entirely to hte absorption of water onto nonpolar groups in the elastin network. Calculatons based on this assumption indicate that the free-energy change associated with this solvent–polymer process is large and positive. It is concluded that the absorption of water onto hydrophobic groups contributes to the elasticity of elastin, particularly at extensions of less than about 70%. The implications of this elastic mechanism are discussed in terms of the random-network model for elastin structure.  相似文献   

5.
Elastomeric proteins are found in a number of animal tissues (elastin, abductin and resilin), where they have evolved to fulfil a range of biological functions. All exhibit rubber-like elasticity, undergoing deformation without rupture, storing the energy involved in deformation, and then recovering to their initial state when the stress is removed. The second part of the process is passive, entropy decreasing when the proteins are deformed, with the higher entropy of the relaxed state providing the driving force for recoil. In plants there is only one well-documented elastomeric protein system, the alcohol-soluble seed storage proteins (gluten) of wheat. The elastic properties of these proteins have no known biological role, the proteins acting as a store for the germinating seed. Here we show that the modulus of elasticity of a group of wheat gluten subunits, when cross-linked by gamma-radiation, is similar to that of the cross-linked polypentapeptide of elastin. However, thermoelasticity studies indicate that the mechanism of elastic recoil is different from elastin and other characterized protein elastomers. Elastomeric force, f, has two components, an internal energy component, f(e), and an entropic component, f(s). The ratio f(e)/f can be determined experimentally; if this ratio is less than 0.5 the elastomeric force is predominantly entropic in origin. The ratio was determined as 5.6 for the cross-linked high M(r) subunits of wheat glutenin and near zero for the cross-linked polypentapeptide of elastin. Tensile stress must be entropic or energetic in origin, the results would suggest that elastic recoil in the wheat gluten subunits, in part, may be associated with extensive hydrogen bonding within and between subunits and that entropic and energetic mechanisms contribute to the observed elasticity.  相似文献   

6.
We report on the structural characterization of amyloid-like fibrils, self-assembled from synthetic polypentapeptides poly(ValGlyGlyLeuGly), whose monomeric sequence is a recurring, simple building block of elastin. This polymer adopts a beta-sheet structure as revealed by circular dichroism and Fourier transform infrared spectroscopy. Furthermore, Thioflavin-T and Congo red birefringence assays confirm the presence of amyloid-like structures. To analyze the supramolecular assembly and elastic properties of the fibrils, we employed atomic force microsocopy and spectroscopy, measuring also the elasticity of mature elastin for a comparative analysis. In the case of fibrils we estimated a Young's modulus ranging from 3.5 to 7 MPa, whereas for elastin it is around 1 MPa. The possibility to section individual fibrils with nanometric control by the AFM tip, realizing biomolecular gaps in the 100 nm range, is also demonstrated. These results are expected to open interesting perspectives for the fabrication of protein-inspired nanostructures with specific physical and chemical properties for applications in biotechnology and tissue engineering.  相似文献   

7.
Evolution of elastic fibers is associated with establishment of the closed circulation system. Primary roles of elastic fibers are to provide elasticity and recoiling to tissues and organs and to maintain the structural integrity against mechanical strain over a lifetime. Elastic fibers are comprised of an insoluble elastin core and surrounding mantle of microfibrils. Elastic fibers are formed in a regulated, stepwise manner, which includes the formation of a microfibrillar scaffold, deposition and integration of tropoelastin monomers into the scaffold, and cross-linking of the monomers to form an insoluble, functional polymer. In recent years, an increasing number of glycoproteins have been identified and shown to be located on or surrounding elastic fibers. Among them, the short fibulins-3, -4 and -5 particularly drew attention because of their potent elastogenic activity. Fibulins-3, -4 and -5 are characterized by tandem repeats of calcium binding EGF-like motifs and a C-terminal fibulin module, which is conserved throughout fibulin family members. Initial biochemical characterization and gene expression studies predicted that fibulins might be involved in structural support and/or matrix–cell interactions. Recent analyses of short fibulin knockout mice have revealed their critical roles in elastic fiber development in vivo. We review recent findings on the elastogenic functions of short fibulins and discuss the molecular mechanism underlying their activity in vitro and in vivo.  相似文献   

8.
9.
Genetic engineering of structural protein polymers.   总被引:5,自引:0,他引:5  
Genetic and protein engineering are components of a new polymer chemistry that provide the tools for producing macromolecular polyamide copolymers of diversity and precision far beyond the current capabilities of synthetic polymer chemistry. The genetic machinery allows molecular control of chemical and physical chain properties. Nature utilizes this control to formulate protein polymers into materials with extraordinary mechanical properties, such as the strength and toughness of silk and the elasticity and resilience of mammalian elastin. The properties of these materials have been attributed to the presence of short repeating oligopeptide sequences contained in the proteins, fibroin, and elastin. We have produced homoblock protein polymers consisting exclusively of silk-like crystalline blocks and elastin-like flexible blocks. We have demonstrated that each homoblock polymer as produced by microbial fermentation exhibits measurable properties of crystallinity and elasticity. Additionally, we have produced alternating block copolymers of various amounts of silk-like and elastin-like blocks, ranging from a ratio of 1:4 to 2:1, respectively. The crystallinity of each copolymer varies with the amount of crystalline block interruptions. The production of fiber materials with custom-engineered mechanical properties is a potential outcome of this technology.  相似文献   

10.
Elastin is a key protein in soft tissue function and pathology. Establishing a structural basis for understanding its reversible elasticity has proven to be difficult. Complementary to structure is the important aspect of flexibility and disorder in elastin. We have used solid-state NMR methods to examine polypeptide and hydrate ordering in both elastic (hydrated) and brittle (dry) elastin fibers and conclude (i) that tightly bound waters are absent in both dry and hydrated elastin and (ii) that the backbone in the hydrated protein is highly disordered with large amplitude motions. The hydrate was studied by (2)H and (17)O NMR, and the polypeptide by (13)C and (2)H NMR. Using a two-dimensional (13)C MAS method, an upper limit of S < 0.1 was determined for the backbone carbonyl group order parameter in hydrated elastin. For comparison, S approximately approximately 0.9 in most proteins. The former result is substantiated by two additional observations: the absence of the characteristic (2)H spectrum for stationary amides and "solution-like" (13)C magic angle spinning spectra at 75 degrees C, at which the material retains elasticity. Comparison of the observed shifts with accepted values for alpha-helices, beta-sheets, or random coils indicates a random coil structure at all carbons. These conclusions are discussed in the context of known thermodynamic properties of elastin and, more generally, protein folding. Because coacervation is an entropy-driven process, it is enhanced by the observed backbone disorder, which, we suggest, is the result of high proline content. This view is supported by recent studies of recombinant elastin polypeptides with systematic proline substitutions.  相似文献   

11.
The resiliency and elasticity of vertebrate tissues are traced to elastin, a crosslinked protein with extensive hydrophobic regions. There is little discussion in the literature on the structure and dynamics of the alanine-rich crosslinking regions of elastin that comprise a significant part of the native protein. In particular, the region encoded by exons 21 and 23, a contiguous splice form found in all types of human elastin, is believed to be strategically positioned for proper function of the protein, namely, in the reversible elongation and contraction of tissue. Hence, molecular dynamics (MD) calculations on the EX21/23 domain are reported here. This crosslinking domain has been assumed to adopt an architecture in which the putative hinge region links two α-helices. In this paper, we use a homology-based approach to obtain starting structures in the hinge region. The subsequent MD brings new insights into the possibility of fluctuations between “open” and “closed” states, as well as distinguishing structural features of the latter. The significance of these findings towards an enhanced understanding of structure–function relationships in elastin and the elastic fiber is discussed.  相似文献   

12.
Egg capsule material serves as a putative protection mechanism for developing snail embryos facing the perils of the marine environment. We conducted the first quantitative study of this acellular structural protein with the goals of characterizing its chemical and mechanical properties and the relationship of these properties to its biological protective function. We have found that this protein polymer exhibits long-range elasticity with an interesting recoverable yield evidenced by an order of magnitude decrease in elastic modulus (apparent failure) that begins at 3%-5% strain. This material differs significantly from other common structural proteins such as collagen and elastin in mechanical response to strain. Qualitative similarities in stress/strain behavior to keratin, another common structural protein, are more than coincidental when composition and detailed mechanical quantification are considered. This suggests the possibility of alpha-helical structure and matrix organization that might be similar in these two proteins. Indeed, the egg capsule protein may be closely related to vertebrate keratins such as intermediate filaments. We conclude that while this material's bimodal tensile properties may serve as useful protection against the impact loading egg capsules encounter in the intertidal zone, the full biological importance of these capsules is not known.  相似文献   

13.
Processes involving self-assembly of monomeric units into organized polymeric arrays are currently the subject of much attention, particularly in the areas of nanotechnology and biomaterials. One biological example of a protein polymer with potential for self-organization is elastin. Elastin is the extracellular matrix protein that imparts the properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Tropoelastin, the approximately 70 kDa soluble monomeric form of elastin, is highly nonpolar in character, consisting essentially of 34 alternating hydrophobic and crosslinking domains. Crosslinking domains contain the lysine residues destined to form the covalent intermolecular crosslinks that stabilize the polymer. We and others have suggested that the hydrophobic domains are sites of interactions that contribute to juxtaposition of lysine residues in preparation for crosslink formation. Here, using recombinant polypeptides based on sequences in human elastin, we demonstrate that as few as three hydrophobic domains flanking two crosslinking domains are sufficient to support a self-assembly process that aligns lysines for zero-length crosslinking, resulting in formation of the crosslinks of native elastin. This process allows fabrication of a polymeric matrix with solubility and mechanical properties similar to those of native elastin.  相似文献   

14.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   

15.
The elastic properties of elastin   总被引:1,自引:0,他引:1  
C A Hoeve  P J Flory 《Biopolymers》1974,13(4):677-686
The thermoelastic properties of elastin immersed in water or in aqueous solutions of alcohols closely resemble those of typical polymers in the rubber elastic state. The evolution of heat much in excess of the work performed on elastin when it is stretched while immersed in water at ca. 25°C is attributable to the exothermic heat of dilution by water absorbed into the polymer during elongation. The negative sign of the temperature coefficient of swelling is confirmatory of this explanation. A network of random chains within the elastin fibers, like that in a typical rubber, is clearly indicated. The elastic properties of elastin are not explicable in terms of a two-phase model consisting of discrete globules of compact elastin molecules fused one to another by cross-linkages, with diluent (water) filling the interstices.  相似文献   

16.
Tropoelastin     
Tropoelastin is a 60-72 kDa alternatively spliced extracellular matrix protein and a key component of elastic fibres. It is found in all vertebrates except for cyclostomes. Secreted tropoelastin is tethered to the cell surface, where it aggregates into organised spheres for cross-linking and incorporation into growing elastic fibres. Tropoelastin is characterised by alternating hydrophobic and hydrophilic domains and is highly flexible. The conserved C-terminus is an area of the molecule of particular biological importance in that it is required for both incorporation into elastin and for cellular interactions. Mature cross-linked tropoelastin gives elastin, which confers resilience and elasticity on a diverse range of tissues. Elastin gene disruptions in disease states and knockout mice emphasise the importance of proper tropoelastin production and assembly, particularly in vascular tissue. Tropoelastin constructs hold promise as biomaterials as they mimic many of elastin's physical and biological properties with the capacity to replace damaged elastin-rich tissue.  相似文献   

17.
Elastin is a self‐assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline‐poor and, as an isolated polypeptide, is susceptible to formation of amyloid‐like structures comprised of stacked β‐sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin‐like polypeptides designed with different numbers of proline‐poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline‐poor hydrophobic sequences to self‐assembly through characterization of phase separation, and to the tensile properties of cross‐linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β‐structure, both affecting polypeptide chain flexibility and cross‐link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence‐structure‐function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 563–573, 2015.  相似文献   

18.
To evaluate the effects of exercise on aortic wall elasticity and elastic components, young male rats underwent various exercise regimes for 16 weeks. In the exercised rats, the aortic incremental elastic modulus decreased significantly when under physiological strain. The aortic content of elastin increased significantly and the calcium content of elastin decreased significantly in the exercised group. The accumulated data from the exercised and sedentary groups revealed that the elastin calcium content was related positively to the incremental elastic modulus. We concluded that physical exercise from an early age decreases the calcium deposit in aortic wall elastin and that this effect probably produced in the exercised rats a distensible aorta.  相似文献   

19.
The temperature-dependent swelling of elastin   总被引:1,自引:0,他引:1  
J M Gosline 《Biopolymers》1978,17(3):697-707
It is suggested that the temperature-dependent swelling behavior of water-swollen elastin is due entirely to the interaction of the numerous nonpolar groups in the elastin protein wiht the aqueous swelling solvent (i.e., ahydrophobic interaction). Flory-Rehner theory for network swelling was used to test this hypothesis. Calculated values for the solvent–polymer interaction parameter, χ1, derived from swelling data indicate that water is a very poor solvent for elastin at all temperatures over the range 0–70° C. Comparison of the calculated χ1 values with theoretical values for the free energy of interaction of nonpolar solutes and water strongly suggests that the swelling behavior of elastin can be attributed quantitatively to hydrophobic interactions. The implications of these results for the structure and elastic mechanism of elastin are discussed.  相似文献   

20.
Elastic fibers are composed of a central core of elastin that is amorphous and electron-lucent in conventional transmission electron micrographs and peripheral microfibrils. A complex infrastructure within the amorphous elastin of mature rat aorta is made visible by fixation and staining with a glutaraldehyde-ruthenium red mixture in phosphate buffer or osmium-ruthenium red in cacodylate buffer. The infrastructure is composed of at least two interlacing but distinct elastic structural components; a framework of circumferentially orientated microfibrils and a three-dimensional meshwork of filaments that permeate the fiber. The latter resembles a reticulum that has previously been observed in freeze-fractured and negatively stained elastin and attributed to the supramolecular organization of elastin. Microfibrils also extend from the core of the elastic fiber into the surrounding matrix where they appear to function as anchoring fibers. These observations indicate that the elastic properties of the arterial wall are an integrated function of both elastin and microfibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号