首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A double-strand break in genomic DNA that remains unrepaired can be lethal for a cell. Indeed, the integrity of the genome is paramount for survival. It is therefore surprising that some cells deliberately introduce double-strand breaks at certain times during their life cycle. Why might they do this? What are the benefits? How are these breaks repaired? The answers to these questions lie in understanding the basis of meiotic recombination, the process that leads to genetic variation. This review summarizes the key roles played by the two recombinases, Dmc1 and Rad51, in the faithful repair of DNA breaks.  相似文献   

2.
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.  相似文献   

3.
RecA protein is involved in homology search and strand exchange processes during recombination. Mitotic cells in eukaryotes express one RecA, Rad51, which is essential for the repair of double-strand breaks (DSBs). Additionally, meiotic cells induce the second RecA, Dmc1. Both Rad51 and Dmc1 are necessary to generate a crossover between homologous chromosomes, which ensures the segregation of the chromosomes at meiotic division I. It is largely unknown how the two RecAs cooperate during meiotic recombination. In this review, recent advances on our knowledge about the roles of Rad51 and Dmc1 during meiosis are summarized and discussed.  相似文献   

4.
Genetic analysis of fission yeast suggests a role for the spHop2–Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2–Mnd1 binds single-strand DNA ends of 3′-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca2+ alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.  相似文献   

5.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

6.
Homologous recombination (HR) is a primary DNA double-strand breaks (DSBs) repair mechanism. The recombinases Rad51 and Dmc1 are highly conserved in the RecA family; Rad51 is mainly responsible for DNA repair in somatic cells during mitosis while Dmc1 only works during meiosis in germ cells. This spatiotemporal difference is probably due to their distinctive mismatch tolerance during HR: Rad51 does not permit HR in the presence of mismatches, whereas Dmc1 can tolerate certain mismatches. Here, the cryo-EM structures of Rad51–DNA and Dmc1–DNA complexes revealed that the major conformational differences between these two proteins are located in their Loop2 regions, which contain invading single-stranded DNA (ssDNA) binding residues and double-stranded DNA (dsDNA) complementary strand binding residues, stabilizing ssDNA and dsDNA in presynaptic and postsynaptic complexes, respectively. By combining molecular dynamic simulation and single-molecule FRET assays, we identified that V273 and D274 in the Loop2 region of human RAD51 (hRAD51), corresponding to P274 and G275 of human DMC1 (hDMC1), are the key residues regulating mismatch tolerance during strand exchange in HR. This HR accuracy control mechanism provides mechanistic insights into the specific roles of Rad51 and Dmc1 in DNA double-strand break repair and may shed light on the regulatory mechanism of genetic recombination in mitosis and meiosis.  相似文献   

7.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

8.
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

9.
During the first meiotic division, homologous chromosomes (homologs) have to separate to opposite poles of the cell to ensure the right complement in the progeny. Homologous recombination provides a mechanism for a genome-wide homology search and physical linkage among the homologs before their orderly segregation. Rad51 and Dmc1 recombinases are the major players in these processes. Disruption of meiosis-specific HOP2 or MND1 genes leads to severe defects in homologous synapsis and an early-stage recombination failure resulting in sterility. Here we show that mouse Hop2 can efficiently form D-loops, the first recombination intermediates, but this activity is abrogated upon association with Mnd1. Furthermore, the Hop2-Mnd1 heterodimer physically interacts with Rad51 and Dmc1 recombinases and stimulates their activity up to 35-fold. Our data reveal an interplay among Hop2, Mnd1 and Rad51 and Dmc1 in the formation of the first recombination intermediates during meiosis.  相似文献   

10.
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.  相似文献   

11.
Upon chromosomal damage, cells activate a checkpoint response that includes cell cycle arrest and a stimulation of DNA repair. The checkpoint protein Rad24 is key to the survival of a single, repairable double-strand break (DSB). However, the low survival of rad24 cells is not due to their inability to arrest cell cycle progression. In rad24 mutants, processing of the broken ends is delayed and protracted, resulting in extended kinetics of DSB repair and in cell death. The limited resection of rad24 mutants also affects recombination partner choice by a mechanism dependent on the length of the interacting homologous donor sequences. Unexpectedly, rad24 cells with a DSB eventually accumulate and die at the G(2)/M phase of the cell cycle. This arrest depends on the spindle checkpoint protein Mad2.  相似文献   

12.
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human and budding yeast. Previous studies of Dmc1 filaments suggested that they might be structurally distinct from filaments of other members of the RecA family, including Rad51. The data presented here indicate that Rad51 and Dmc1 filaments are essentially identical with respect to several structural parameters, including persistence length, helical pitch, filament diameter, DNA base pairs per helical turn and helical handedness. These data, together with previous studies demonstrating similar in vitro recombinase activity for Dmc1 and Rad51, support the view that differences in the meiotic function of Rad51 and Dmc1 are more likely to result from the influence of distinct sets of accessory proteins than from intrinsic differences in filament structure.  相似文献   

13.
Nucleoprotein filaments made up of Rad51 or Dmc1 recombinases, the core structures of recombination, engage in ATP-dependent DNA-strand exchange. The ability of recombinases to form filaments is enhanced by recombination factors termed 'mediators'. Here, we show that the Schizosaccharomyces pombe Swi5-Sfr1 complex, a conserved eukaryotic protein complex, at substoichiometric concentrations stimulates strand exchange mediated by Rhp51 (the S. pombe Rad51 homolog) and Dmc1 on long DNA substrates. Reactions mediated by both recombinases are completely dependent on Swi5-Sfr1, replication protein A (RPA) and ATP, although RPA inhibits the reaction when it is incubated with single-stranded DNA (ssDNA) before the recombinase. The Swi5-Sfr1 complex overcomes, at least partly, the inhibitory effect of RPA, representing a novel class of mediator. Notably, the Swi5-Sfr1 complex preferentially stimulates the ssDNA-dependent ATPase activity of Rhp51, and it increases the amounts of Dmc1 bound to ssDNA.  相似文献   

14.
Homologous recombination (HR) plays an important role in the maintenance of genome integrity. HR repairs broken DNA during S and G2 phases of the cell cycle but its regulatory mechanisms remain elusive. Here, we report that Polo-like kinase 1 (Plk1), which is vital for cell proliferation and is frequently upregulated in cancer cells, phosphorylates the essential Rad51 recombinase at serine 14 (S14) during the cell cycle and in response to DNA damage. Strikingly, S14 phosphorylation licenses subsequent Rad51 phosphorylation at threonine 13 (T13) by casein kinase 2 (CK2), which in turn triggers direct binding to the Nijmegen breakage syndrome gene product, Nbs1. This mechanism facilitates Rad51 recruitment to damage sites, thus enhancing cellular resistance to genotoxic stresses. Our results uncover a role of Plk1 in linking DNA damage recognition with HR repair and suggest a molecular mechanism for cancer development associated with elevated activity of Plk1.  相似文献   

15.
During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.  相似文献   

16.
Repairing a double-strand break by homologous recombination requires binding of the strand exchange protein Rad51p to ssDNA, followed by synapsis with a homologous donor. Here we used chromatin immunoprecipitation to monitor the in vivo association of Saccharomyces cerevisiae Rad51p with both the cleaved MATa locus and the HML alpha donor. Localization of Rad51p to MAT precedes its association with HML, providing evidence of the time needed for the Rad51 filament to search the genome for a homologous sequence. Rad51p binding to ssDNA requires Rad52p. The absence of Rad55p delays Rad51p binding to ssDNA and prevents strand invasion and localization of Rad51p to HML alpha. Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand.  相似文献   

17.
Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.  相似文献   

18.
In Saccharomyces cerevisiae, Rad51p plays a central role in homologous recombination and the repair of double-strand breaks (DSBs). Double mutants of the two Zea mays L. (maize) rad51 homologs are viable and develop well under normal conditions, but are male sterile and have substantially reduced seed set. Light microscopic analyses of male meiosis in these plants reveal reduced homologous pairing, synapsis of nonhomologous chromosomes, reduced bivalents at diakinesis, numerous chromosome breaks at anaphase I, and that >33% of quartets carry cells that either lack an organized nucleolus or have two nucleoli. This indicates that RAD51 is required for efficient chromosome pairing and its absence results in nonhomologous pairing and synapsis. These phenotypes differ from those of an Arabidopsis rad51 mutant that exhibits completely disrupted chromosome pairing and synapsis during meiosis. Unexpectedly, surviving female gametes produced by maize rad51 double mutants are euploid and exhibit near-normal rates of meiotic crossovers. The finding that maize rad51 double mutant embryos are extremely susceptible to radiation-induced DSBs demonstrates a conserved role for RAD51 in the repair of mitotic DSBs in plants, vertebrates, and yeast.  相似文献   

19.
20.
Assembly and disassembly of Rad51 and Rad52 complexes were monitored by immunofluorescence during homologous recombination initiated by an HO endonuclease-induced double-strand break (DSB) at the MAT locus. DSB-induced Rad51 and Rad52 foci colocalize with a TetR-GFP focus at tetO sequences adjacent to MAT. In strains in which HO cleaves three sites on chromosome III, we observe three distinct foci that colocalize with adjacent GFP chromosome marks. We compared the kinetics of focus formation with recombination intermediates and products when HO-cleaved MATalpha recombines with the donor, MATa. Rad51 assembly occurs 1 h after HO cleavage. Rad51 disassembly occurs at the same time that new DNA synthesis is initiated after single-stranded (ss) MAT DNA invades MATa. We present evidence for three distinct roles for Rad52 in recombination: a presynaptic role necessary for Rad51 assembly, a synaptic role with Rad51 filaments, and a postsynaptic role after Rad51 dissociates. Additional biochemical studies suggest the presence of an ssDNA complex containing both Rad51 and Rad52.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号